328 research outputs found

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Audio‐Visual Speaker Tracking

    Get PDF
    Target motion tracking found its application in interdisciplinary fields, including but not limited to surveillance and security, forensic science, intelligent transportation system, driving assistance, monitoring prohibited area, medical science, robotics, action and expression recognition, individual speaker discrimination in multi‐speaker environments and video conferencing in the fields of computer vision and signal processing. Among these applications, speaker tracking in enclosed spaces has been gaining relevance due to the widespread advances of devices and technologies and the necessity for seamless solutions in real‐time tracking and localization of speakers. However, speaker tracking is a challenging task in real‐life scenarios as several distinctive issues influence the tracking process, such as occlusions and an unknown number of speakers. One approach to overcome these issues is to use multi‐modal information, as it conveys complementary information about the state of the speakers compared to single‐modal tracking. To use multi‐modal information, several approaches have been proposed which can be classified into two categories, namely deterministic and stochastic. This chapter aims at providing multimedia researchers with a state‐of‐the‐art overview of tracking methods, which are used for combining multiple modalities to accomplish various multimedia analysis tasks, classifying them into different categories and listing new and future trends in this field

    XRLoc: Accurate UWB Localization for XR Systems

    Full text link
    Understanding the location of ultra-wideband (UWB) tag-attached objects and people in the real world is vital to enabling a smooth cyber-physical transition. However, most UWB localization systems today require multiple anchors in the environment, which can be very cumbersome to set up. In this work, we develop XRLoc, providing an accuracy of a few centimeters in many real-world scenarios. This paper will delineate the key ideas which allow us to overcome the fundamental restrictions that plague a single anchor point from localization of a device to within an error of a few centimeters. We deploy a VR chess game using everyday objects as a demo and find that our system achieves 2.42.4 cm median accuracy and 5.35.3 cm 90th90^\mathrm{th} percentile accuracy in dynamic scenarios, performing at least 8×8\times better than state-of-art localization systems. Additionally, we implement a MAC protocol to furnish these locations for over 1010 tags at update rates of 100100 Hz, with a localization latency of 1\sim 1 ms

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    The Future of the Operating Room: Surgical Preplanning and Navigation using High Accuracy Ultra-Wideband Positioning and Advanced Bone Measurement

    Get PDF
    This dissertation embodies the diversity and creativity of my research, of which much has been peer-reviewed, published in archival quality journals, and presented nationally and internationally. Portions of the work described herein have been published in the fields of image processing, forensic anthropology, physical anthropology, biomedical engineering, clinical orthopedics, and microwave engineering. The problem studied is primarily that of developing the tools and technologies for a next-generation surgical navigation system. The discussion focuses on the underlying technologies of a novel microwave positioning subsystem and a bone analysis subsystem. The methodologies behind each of these technologies are presented in the context of the overall system with the salient results helping to elucidate the difficult facets of the problem. The microwave positioning system is currently the highest accuracy wireless ultra-wideband positioning system that can be found in the literature. The challenges in producing a system with these capabilities are many, and the research and development in solving these problems should further the art of high accuracy pulse-based positioning

    Localisation and tracking of people using distributed UWB sensors

    Get PDF
    In vielen Überwachungs- und Rettungsszenarien ist die Lokalisierung und Verfolgung von Personen in Innenräumen auf nichtkooperative Weise erforderlich. Für die Erkennung von Objekten durch Wände in kurzer bis mittlerer Entfernung, ist die Ultrabreitband (UWB) Radartechnologie aufgrund ihrer hohen zeitlichen Auflösung und Durchdringungsfähigkeit Erfolg versprechend. In dieser Arbeit wird ein Prozess vorgestellt, mit dem Personen in Innenräumen mittels UWB-Sensoren lokalisiert werden können. Er umfasst neben der Erfassung von Messdaten, Abstandschätzungen und dem Erkennen von Mehrfachzielen auch deren Ortung und Verfolgung. Aufgrund der schwachen Reflektion von Personen im Vergleich zum Rest der Umgebung, wird zur Personenerkennung zuerst eine Hintergrundsubtraktionsmethode verwendet. Danach wird eine konstante Falschalarmrate Methode zur Detektion und Abstandschätzung von Personen angewendet. Für Mehrfachziellokalisierung mit einem UWB-Sensor wird eine Assoziationsmethode entwickelt, um die Schätzungen des Zielabstandes den richtigen Zielen zuzuordnen. In Szenarien mit mehreren Zielen kann es vorkommen, dass ein näher zum Sensor positioniertes Ziel ein anderes abschattet. Ein Konzept für ein verteiltes UWB-Sensornetzwerk wird vorgestellt, in dem sich das Sichtfeld des Systems durch die Verwendung mehrerer Sensoren mit unterschiedlichen Blickfeldern erweitert lässt. Hierbei wurde ein Prototyp entwickelt, der durch Fusion von Sensordaten die Verfolgung von Mehrfachzielen in Echtzeit ermöglicht. Dabei spielen insbesondere auch Synchronisierungs- und Kooperationsaspekte eine entscheidende Rolle. Sensordaten können durch Zeitversatz und systematische Fehler gestört sein. Falschmessungen und Rauschen in den Messungen beeinflussen die Genauigkeit der Schätzergebnisse. Weitere Erkenntnisse über die Zielzustände können durch die Nutzung zeitlicher Informationen gewonnen werden. Ein Mehrfachzielverfolgungssystem wird auf der Grundlage des Wahrscheinlichkeitshypothesenfilters (Probability Hypothesis Density Filter) entwickelt, und die Unterschiede in der Systemleistung werden bezüglich der von den Sensoren ausgegebene Informationen, d.h. die Fusion von Ortungsinformationen und die Fusion von Abstandsinformationen, untersucht. Die Information, dass ein Ziel detektiert werden sollte, wenn es aufgrund von Abschattungen durch andere Ziele im Szenario nicht erkannt wurde, wird als dynamische Überdeckungswahrscheinlichkeit beschrieben. Die dynamische Überdeckungswahrscheinlichkeit wird in das Verfolgungssystem integriert, wodurch weniger Sensoren verwendet werden können, während gleichzeitig die Performanz des Schätzers in diesem Szenario verbessert wird. Bei der Methodenauswahl und -entwicklung wurde die Anforderung einer Echtzeitanwendung bei unbekannten Szenarien berücksichtigt. Jeder untersuchte Aspekt der Mehrpersonenlokalisierung wurde im Rahmen dieser Arbeit mit Hilfe von Simulationen und Messungen in einer realistischen Umgebung mit UWB Sensoren verifiziert.Indoor localisation and tracking of people in non-cooperative manner is important in many surveillance and rescue applications. Ultra wideband (UWB) radar technology is promising for through-wall detection of objects in short to medium distances due to its high temporal resolution and penetration capability. This thesis tackles the problem of localisation of people in indoor scenarios using UWB sensors. It follows the process from measurement acquisition, multiple target detection and range estimation to multiple target localisation and tracking. Due to the weak reflection of people compared to the rest of the environment, a background subtraction method is initially used for the detection of people. Subsequently, a constant false alarm rate method is applied for detection and range estimation of multiple persons. For multiple target localisation using a single UWB sensor, an association method is developed to assign target range estimates to the correct targets. In the presence of multiple targets it can happen that targets closer to the sensor induce shadowing over the environment hindering the detection of other targets. A concept for a distributed UWB sensor network is presented aiming at extending the field of view of the system by using several sensors with different fields of view. A real-time operational prototype has been developed taking into consideration sensor cooperation and synchronisation aspects, as well as fusion of the information provided by all sensors. Sensor data may be erroneous due to sensor bias and time offset. Incorrect measurements and measurement noise influence the accuracy of the estimation results. Additional insight of the targets states can be gained by exploiting temporal information. A multiple person tracking framework is developed based on the probability hypothesis density filter, and the differences in system performance are highlighted with respect to the information provided by the sensors i.e. location information fusion vs range information fusion. The information that a target should have been detected when it is not due to shadowing induced by other targets is described as dynamic occlusion probability. The dynamic occlusion probability is incorporated into the tracking framework, allowing fewer sensors to be used while improving the tracker performance in the scenario. The method selection and development has taken into consideration real-time application requirements for unknown scenarios at every step. Each investigated aspect of multiple person localization within the scope of this thesis has been verified using simulations and measurements in a realistic environment using M-sequence UWB sensors
    corecore