9,311 research outputs found

    Robust Synthesis of Adversarial Visual Examples Using a Deep Image Prior

    Full text link
    We present a novel method for generating robust adversarial image examples building upon the recent `deep image prior' (DIP) that exploits convolutional network architectures to enforce plausible texture in image synthesis. Adversarial images are commonly generated by perturbing images to introduce high frequency noise that induces image misclassification, but that is fragile to subsequent digital manipulation of the image. We show that using DIP to reconstruct an image under adversarial constraint induces perturbations that are more robust to affine deformation, whilst remaining visually imperceptible. Furthermore we show that our DIP approach can also be adapted to produce local adversarial patches (`adversarial stickers'). We demonstrate robust adversarial examples over a broad gamut of images and object classes drawn from the ImageNet dataset.Comment: Accepted to BMVC 201

    VGAN-Based Image Representation Learning for Privacy-Preserving Facial Expression Recognition

    Full text link
    Reliable facial expression recognition plays a critical role in human-machine interactions. However, most of the facial expression analysis methodologies proposed to date pay little or no attention to the protection of a user's privacy. In this paper, we propose a Privacy-Preserving Representation-Learning Variational Generative Adversarial Network (PPRL-VGAN) to learn an image representation that is explicitly disentangled from the identity information. At the same time, this representation is discriminative from the standpoint of facial expression recognition and generative as it allows expression-equivalent face image synthesis. We evaluate the proposed model on two public datasets under various threat scenarios. Quantitative and qualitative results demonstrate that our approach strikes a balance between the preservation of privacy and data utility. We further demonstrate that our model can be effectively applied to other tasks such as expression morphing and image completion

    Learning Face Age Progression: A Pyramid Architecture of GANs

    Full text link
    The two underlying requirements of face age progression, i.e. aging accuracy and identity permanence, are not well studied in the literature. In this paper, we present a novel generative adversarial network based approach. It separately models the constraints for the intrinsic subject-specific characteristics and the age-specific facial changes with respect to the elapsed time, ensuring that the generated faces present desired aging effects while simultaneously keeping personalized properties stable. Further, to generate more lifelike facial details, high-level age-specific features conveyed by the synthesized face are estimated by a pyramidal adversarial discriminator at multiple scales, which simulates the aging effects in a finer manner. The proposed method is applicable to diverse face samples in the presence of variations in pose, expression, makeup, etc., and remarkably vivid aging effects are achieved. Both visual fidelity and quantitative evaluations show that the approach advances the state-of-the-art.Comment: CVPR 2018. V4 and V2 are the same, i.e. the conference version; V3 is a related but different work, which is mistakenly submitted and will be submitted as a new arXiv pape

    FaceShop: Deep Sketch-based Face Image Editing

    Get PDF
    We present a novel system for sketch-based face image editing, enabling users to edit images intuitively by sketching a few strokes on a region of interest. Our interface features tools to express a desired image manipulation by providing both geometry and color constraints as user-drawn strokes. As an alternative to the direct user input, our proposed system naturally supports a copy-paste mode, which allows users to edit a given image region by using parts of another exemplar image without the need of hand-drawn sketching at all. The proposed interface runs in real-time and facilitates an interactive and iterative workflow to quickly express the intended edits. Our system is based on a novel sketch domain and a convolutional neural network trained end-to-end to automatically learn to render image regions corresponding to the input strokes. To achieve high quality and semantically consistent results we train our neural network on two simultaneous tasks, namely image completion and image translation. To the best of our knowledge, we are the first to combine these two tasks in a unified framework for interactive image editing. Our results show that the proposed sketch domain, network architecture, and training procedure generalize well to real user input and enable high quality synthesis results without additional post-processing.Comment: 13 pages, 20 figure
    corecore