9,563 research outputs found

    Approximations for fork/join systems with inputs from multi-server stations.

    Get PDF
    Fork/join stations are commonly used to model synchronization constraints in queuing network models of computer and manufacturing systems. This paper presents an exact analysis of a fork/join station in a closed queuing network with inputs from multi-server stations with two-phase Coxian service distributions. The underlying queue length process is analyzed exactly to determine performance measures such as through put, and distributions of the queue length at the fork/join station. By choosing suitable parameters for the two-phase Coxian distributions, the effect of variability in inputs on system performance is studied. The study reveals that for several system configurations, analysis of the simpler system with exponential inputs provides efficient approximations for performance measures. Both, the exact analysis and the simple approximations of fork/join systems constitute useful building blocks for developing efficient methods for analyzing large queuing networks with fork/join stations.queueing; fork/join; synchronization; assembly systems; closed queuing networks;

    Diffusion geometry unravels the emergence of functional clusters in collective phenomena

    Full text link
    Collective phenomena emerge from the interaction of natural or artificial units with a complex organization. The interplay between structural patterns and dynamics might induce functional clusters that, in general, are different from topological ones. In biological systems, like the human brain, the overall functionality is often favored by the interplay between connectivity and synchronization dynamics, with functional clusters that do not coincide with anatomical modules in most cases. In social, socio-technical and engineering systems, the quest for consensus favors the emergence of clusters. Despite the unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity of their inter-connectivity, a way to predict and identify the emergence of functional modules in collective phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define the diffusion distance between any pair of units in a networked system. Such a metric allows to exploit the underlying diffusion geometry to provide a unifying framework for the intimate relationship between metastable synchronization, consensus and random search dynamics in complex networks, pinpointing the functional mesoscale organization of synthetic and biological systems.Comment: 9 pages, 7 figure

    A Hidden Markov Factor Analysis Framework for Seizure Detection in Epilepsy Patients

    Get PDF
    Approximately 1% of the world population suffers from epilepsy. Continuous long-term electroencephalographic (EEG) monitoring is the gold-standard for recording epileptic seizures and assisting in the diagnosis and treatment of patients with epilepsy. Detection of seizure from the recorded EEG is a laborious, time consuming and expensive task. In this study, we propose an automated seizure detection framework to assist electroencephalographers and physicians with identification of seizures in recorded EEG signals. In addition, an automated seizure detection algorithm can be used for treatment through automatic intervention during the seizure activity and on time triggering of the injection of a radiotracer to localize the seizure activity. In this study, we developed and tested a hidden Markov factor analysis (HMFA) framework for automated seizure detection based on different features such as total effective inflow which is calculated based on connectivity measures between different sites of the brain. The algorithm was tested on long-term (2.4-7.66 days) continuous sEEG recordings from three patients and a total of 16 seizures, producing a mean sensitivity of 96.3% across all seizures, a mean specificity of 3.47 false positives per hour, and a mean latency of 3.7 seconds form the actual seizure onset. The latency was negative for a few of the seizures which implies the proposed method detects the seizure prior to its onset. This is an indication that with some extension the proposed method is capable of seizure prediction

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Cycles inside cycles: Spanish regional aggregation

    Get PDF
    This paper sets out a comprehensive framework to identify regional business cycles within Spain and analyses their stylised features and the degree of synchronization present among them and the Spanish economy. We show that the regional cycles are quite heterogeneous although they display some degree of synchronization that can be partially explained using macroeconomic variables. We also propose a dynamic factor model to cluster the regional comovements and Önd out if the country cycle is simply the aggregation of the regional ones. We Önd that the Spanish business cycle is not shared by the seventeen regions, but is the sum of the di§erent regional behaviours. The implications derived from our results are useful both for policy makers and analysts.

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Synchronization of unidirectional time delay chaotic networks and the greatest common divisor

    Full text link
    We present the interplay between synchronization of unidirectional coupled chaotic nodes with heterogeneous delays and the greatest common divisor (GCD) of loops composing the oriented graph. In the weak chaos region and for GCD=1 the network is in chaotic zero-lag synchronization, whereas for GCD=m>1 synchronization of m-sublattices emerges. Complete synchronization can be achieved when all chaotic nodes are influenced by an identical set of delays and in particular for the limiting case of homogeneous delays. Results are supported by simulations of chaotic systems, self-consistent and mixing arguments, as well as analytical solutions of Bernoulli maps.Comment: 7 pages, 5 figure
    corecore