4,122 research outputs found

    Avery Final Report: Identification and Cross-Directional Control of Coating Processes

    Get PDF
    Coating refers to the covering of a solid with a uniform layer of liquid. Of special industrial interest is the cross-directional control of coating processes, where the cross-direction refers to the direction perpendicular to the substrate movement. The objective of the controller is to maintain a uniform coating under unmeasured process disturbances. Assumptions that are relevant to coating processes found in industry are used to develop a model for control design. We show how to identify the model from input-output data. This model is used to derive a model predictive controller to maintain flat profiles of coating across the substrate by varying the liquid flows along the cross direction. The model predictive controller computes the control action which minimizes the predicted deviation in cross-directional uniformity. The predictor combines the estimate obtained from the model with the measurement of the cross-directional uniformity to obtain a prediction for the next time step. A filter is used to obtain robustness to model error and insensitivity to measurement noise. The tuning of the noise filter and different methods for handling actuator constraints are studied in detail. The three different constraint-handling methods studied are: the weighting of actuator movements in the objective function, explicitly adding constraints to the control algorithm, i.e. constrained model predictive control, and scaling infeasible control actions calculated from an unconstrained control law to be feasible. Actuator constraints, measurement noise, model uncertainty, and the plant condition number are investigated to determine which of these limit the achievable closed loop performance. From knowledge of how these limitations affect the performance we find how the plant could be modified to improve the process uniformity. Also, because identification of model parameters is time-consuming and costly, we study how accurate the identification must be to achieve a given level of performance. The theory developed throughout the paper is rigorously verified though simulations and experiments on a pilot plant. The effect of interactions on the closed loop performance is shown to be negligible for this pilot plant. The measurement noise and the actuator constraints are shown to have the largest effect on closed loop performance

    A Streamwise Constant Model of Turbulence in Plane Couette Flow

    Get PDF
    Streamwise and quasi-streamwise elongated structures have been shown to play a significant role in turbulent shear flows. We model the mean behavior of fully turbulent plane Couette flow using a streamwise constant projection of the Navier Stokes equations. This results in a two-dimensional, three velocity component (2D/3C2D/3C) model. We first use a steady state version of the model to demonstrate that its nonlinear coupling provides the mathematical mechanism that shapes the turbulent velocity profile. Simulations of the 2D/3C2D/3C model under small amplitude Gaussian forcing of the cross-stream components are compared to DNS data. The results indicate that a streamwise constant projection of the Navier Stokes equations captures salient features of fully turbulent plane Couette flow at low Reynolds numbers. A system theoretic approach is used to demonstrate the presence of large input-output amplification through the forced 2D/3C2D/3C model. It is this amplification coupled with the appropriate nonlinearity that enables the 2D/3C2D/3C model to generate turbulent behaviour under the small amplitude forcing employed in this study.Comment: Journal of Fluid Mechanics 2010, in pres

    Safety Assurance of Non-Deterministic Flight Controllers in Aircraft Applications

    Get PDF
    Loss of control is a serious problem in aviation that primarily affects General Aviation. Technological advancements can help mitigate the problem, but the FAA certification process makes certain solutions economically unfeasible. This investigation presents the design of a generic adaptive autopilot that could potentially lead to a single certification for use in several makes and models of aircraft. The autopilot consists of a conventional controller connected in series with a robust direct adaptive model reference controller. In this architecture, the conventional controller is tuned once to provide outer-loop guidance and navigation to a reference model. The adaptive controller makes unknown aircraft behave like the reference model, allowing the conventional controller to successfully provide navigation without the need for retuning. A strong theoretical foundation is presented as an argument for the safety and stability of the controller. The stability proof of direct adaptive controllers require that the plant being controlled has no unstable transmission zeros and has a nonzero high frequency gain. Because most conventional aircraft do not readily meet these requirements, a process known as sensor blending was used. Sensor blending consists of using a linear combination of the plant’s outputs that has no unstable transmission zeros and has a nonzero high frequency gain to drive the adaptive controller. Although this method does not present a problem for regulators, it can lead to a steady state error in tracking applications. The sensor blending theory was expanded to take advantage of the system’s dynamics to allow for zero steady state error tracking. This method does not need knowledge of the specific system’s dynamics, but instead uses the structure of the A and B matrices to perform the blending for the general case. The generic adaptive autopilot was tested in two high-fidelity nonlinear simulators of two typical General Aviation aircraft. The results show that the autopilot was able to adapt appropriately to the different aircraft and was able to perform three-dimensional navigation and an ILS approach, without any modification to the controller. The autopilot was tested in moderate atmospheric turbulence, using consumer-grade sensors and actuators currently available in General Aviation aircraft. The generic adaptive autopilot was shown to be robust to atmospheric turbulence and sensor and actuator random noise. In both aircraft simulators, the autopilot adapted successfully to changes in airspeed, altitude, and configuration. This investigation proves the feasibility of a generic autopilot using direct adaptive controller. The autopilot does not need a priori information of the specific aircraft’s dynamics to maintain its safety and stability arguments. Real-time parameter estimation of the aircraft dynamics are not needed. Recommendations for future work are provided

    Initial design and evaluation of automatic restructurable flight control system concepts

    Get PDF
    Results of efforts to develop automatic control design procedures for restructurable aircraft control systems is presented. The restructurable aircraft control problem involves designing a fault tolerance control system which can accommodate a wide variety of unanticipated aircraft failure. Under NASA sponsorship, many of the technologies which make such a system possible were developed and tested. Future work will focus on developing a methodology for integrating these technologies and demonstration of a complete system

    Relaxing Fundamental Assumptions in Iterative Learning Control

    Full text link
    Iterative learning control (ILC) is perhaps best decribed as an open loop feedforward control technique where the feedforward signal is learned through repetition of a single task. As the name suggests, given a dynamic system operating on a finite time horizon with the same desired trajectory, ILC aims to iteratively construct the inverse image (or its approximation) of the desired trajectory to improve transient tracking. In the literature, ILC is often interpreted as feedback control in the iteration domain due to the fact that learning controllers use information from past trials to drive the tracking error towards zero. However, despite the significant body of literature and powerful features, ILC is yet to reach widespread adoption by the control community, due to several assumptions that restrict its generality when compared to feedback control. In this dissertation, we relax some of these assumptions, mainly the fundamental invariance assumption, and move from the idea of learning through repetition to two dimensional systems, specifically repetitive processes, that appear in the modeling of engineering applications such as additive manufacturing, and sketch out future research directions for increased practicality: We develop an L1 adaptive feedback control based ILC architecture for increased robustness, fast convergence, and high performance under time varying uncertainties and disturbances. Simulation studies of the behavior of this combined L1-ILC scheme under iteration varying uncertainties lead us to the robust stability analysis of iteration varying systems, where we show that these systems are guaranteed to be stable when the ILC update laws are designed to be robust, which can be done using existing methods from the literature. As a next step to the signal space approach adopted in the analysis of iteration varying systems, we shift the focus of our work to repetitive processes, and show that the exponential stability of a nonlinear repetitive system is equivalent to that of its linearization, and consequently uniform stability of the corresponding state space matrix.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133232/1/altin_1.pd
    corecore