9,719 research outputs found

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Robust Constrained Model Predictive Control using Linear Matrix Inequalities

    Get PDF
    The primary disadvantage of current design techniques for model predictive control (MPC) is their inability to deal explicitly with plant model uncertainty. In this paper, we present a new approach for robust MPC synthesis which allows explicit incorporation of the description of plant uncertainty in the problem formulation. The uncertainty is expressed both in the time domain and the frequency domain. The goal is to design, at each time step, a state-feedback control law which minimizes a "worst-case" infinite horizon objective function, subject to constraints on the control input and plant output. Using standard techniques, the problem of minimizing an upper bound on the "worst-case" objective function, subject to input and output constraints, is reduced to a convex optimization involving linear matrix inequalities (LMIs). It is shown that the feasible receding horizon state-feedback control design robustly stabilizes the set of uncertain plants under consideration. Several extensions, such as application to systems with time-delays and problems involving constant set-point tracking, trajectory tracking and disturbance rejection, which follow naturally from our formulation, are discussed. The controller design procedure is illustrated with two examples. Finally, conclusions are presented

    Delay-independent decentralised output feedback control for large-scale systems with nonlinear interconnections

    Get PDF
    In this paper, a stabilisation problem for a class of large-scale systems with nonlinear interconnections is considered. All the uncertainties are nonlinear and are subject to the effects of time delay. A decentralised static output feedback variable structure control is synthesised and the stability of the corresponding closed-loop system is analysed based on the Lyapunov Razumikhin approach. A set of conditions is developed to guarantee that the large-scale interconnected system is stabilised uniformly asymptotically. Further study shows that the conservatism can be reduced by employing additive controllers if the known interconnections are separated into matched and mismatched parts. It is not required that the subsystems are square. The designed controller is independent of time delay and thus it does not require memory. Simulation results show the effectiveness of the proposed approach
    corecore