246 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Design of robust control for uncertain fuzzy quadruple-tank systems with time-varying delays

    Get PDF
    Producción CientíficaThe robust H∞ observer-based control design is addressed here for non-linear Takagi-Sugeno (T-S) fuzzy systems with time-varying delays, subject to uncertainties and external disturbances. This is motivated by the quadruple-tank with time delay control problem. The observer design methodology is based on constructing an appropriate Lyapunov–Krasovskii functional (LKF) for an augmented system formed from the original and the delayed states. The bilinear terms are transferred to the linear matrix inequalities, thanks to a change of variables which can be solved in one step. Furthermore, by employing the L2 performance index, the adverse effects of persistent bounded disturbances is largely avoided. The proposed method has the advantage of relating the controller and Lyapunov function to both the original and delayed states. Then, the controller and observer gains are obtained simultaneously by solving these inequalities with off-the-shelf software (Yalmip/MATLAB toolbox). Finally, an application to a simulated quadruple-tank system with time delay is carried out to demonstrate the benefits of the proposed technique, showing a compromise between controller simplicity and robustness that outperforms previous approaches.Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Robust H∞ Control of Takagi–Sugeno Systems with Actuator Saturation

    Get PDF
    Producción CientíficaThe robust static output feedback control for continuous-time Takagi–Sugeno systems subject to actuator saturation is solved here, including H∞ performance guarantees. Based on a polytopic model of the saturation, sufficient conditions are proposed for designing these controllers in terms of Linear Matrix Inequalities. With the aid of some special derivations, bilinear matrix inequalities are converted into a set of linear matrix inequalities which can be solved easily without requiring iterative algorithms or equality constraints, moreover, the output matrix of the considered system does not require to be full row rank. Finally, some examples are presented to show the validity of the proposed methodology

    Intelligent Control of Wind Energy Conversion Systems

    Get PDF

    Global Feed-Forward Adaptive Fuzzy Control of Uncertain MIMO Nonlinear Systems

    Get PDF
    This study proposes a novel adaptive control approach using a feedforward Takagi-Sugeno (TS) fuzzy approximator for a class of highly unknown multi-input multi-output (MIMO) nonlinear plants. First of all, the design concept, namely, feedforward fuzzy approximator (FFA) based control, is introduced to compensate the unknown feedforward terms required during steady state via a forward TS fuzzy system which takes the desired commands as the input variables. Different from the traditional fuzzy approximation approaches, this scheme allows easier implementation and drops the boundedness assumption on fuzzy universal approximation errors. Furthermore, the controller is synthesized to assure either the disturbance attenuation or the attenuation of both disturbances and estimated fuzzy parameter errors or globally asymptotic stable tracking. In addition, all the stability is guaranteed from a feasible gain solution of the derived linear matrix inequality (LMI). Meanwhile, the highly uncertain holonomic constrained systems are taken as applications with either guaranteed robust tracking performances or asymptotic stability in a global sense. It is demonstrated that the proposed adaptive control is easily and straightforwardly extended to the robust TS FFA-based motion/force tracking controller. Finally, two planar robots transporting a common object is taken as an application example to show the expected performance. The comparison between the proposed and traditional adaptive fuzzy control schemes is also performed in numerical simulations. Keywords: Adaptive control; Takagi-Sugeno (TS) fuzzy system; holonomic systems; motion/force control

    Modeling and Fuzzy PDC Control and Its Application to an Oscillatory TLP Structure

    Get PDF
    An analytical solution is derived to describe the wave-induced flow field and surge motion of a deformable platform structure controlled with fuzzy controllers in an oceanic environment. In the controller design procedure, a parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic controller by blending all local state feedback controllers. The Lyapunov method is used to carry out stability analysis of a real system structure. The corresponding boundary value problems are then incorporated into scattering and radiation problems. These are analytically solved, based on the separation of variables, to obtain a series of solutions showing the harmonic incident wave motion and surge motion. The dependence of the wave-induced flow field and its resonant frequency on wave characteristics and structural properties including platform width, thickness and mass can thus be drawn with a parametric approach. The wave-induced displacement of the surge motion is determined from these mathematical models. The vibration of the floating structure and mechanical motion caused by the wave force are also discussed analytically based on fuzzy logic theory and the mathematical framework to find the decay in amplitude of the surge motion in the tension leg platform (TLP) system. The expected effects of the damping in amplitude of the surge motion due to the control force on the structural response are obvious
    corecore