786 research outputs found

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Robust Stability Analysis for Uncertain Switched Discrete-Time Systems

    Get PDF
    This paper is concerned with the robust stability for a class of switched discrete-time systems with state parameter uncertainty. Firstly, a new matrix inequality considering uncertainties is introduced and proved. By means of it, a novel sufficient condition for robust stability of a class of uncertain switched discrete-time systems is presented. Furthermore, based on the result obtained, the switching law is designed and has been performed well, and some sufficient conditions of robust stability have been derived for the uncertain switched discrete-time systems using the Lyapunov stability theorem, block matrix method and inequality technology. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes

    Robust Fault Detection of Switched Linear Systems with State Delays

    Get PDF
    This correspondence deals with the problem of robust fault detection for discrete-time switched systems with state delays under an arbitrary switching signal. The fault detection filter is used as the residual generator, in which the filter parameters are dependent on the system mode. Attention is focused on designing the robust fault detection filter such that, for unknown inputs, control inputs, and model uncertainties, the estimation error between the residuals and faults is minimized. The problem of robust fault detection is converted into an H infin-filtering problem. By a switched Lyapunov functional approach, a sufficient condition for the solvability of this problem is established in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of the proposed method

    Robust H1 control for a class of switched nonlinear systems

    Get PDF
    This article is concerned with the robust H1 control problem of a class of switched nonlinear systems with norm-bounded time-varying uncertainties. The system considered in this class is composed of two parts: a uncertain linear switched part and a nonlinear part, which is also switched systems. Under the circumstances, that the H1 control problem of all subsystems are not all solvable, the switched feedback control law and the switching law are designed using the average dwell-time method. The corresponding closed-loop switched system is exponentially stable and achieves a weighted L2-gain

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    corecore