10,839 research outputs found

    Robust stability and stabilization of nonlinear uncertain stochastic switched discrete-time systems with interval time-varying delays,

    Get PDF
    Abstract: This paper is concerned with robust stability and stabilization of nonlinear uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust stability and stabilization for the nonlinear uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Numerical examples are included to illustrate the effectiveness of the results

    Stability analysis and controller design for switched time-delay systems

    Get PDF
    In this thesis, the stability analysis and control synthesis for uncertain switched time-delay systems are investigated. It is known that a wide variety of real-world systems are subject to uncertainty and also time-delay in their dynamics. These characteristics, if not taken into consideration in analysis and synthesis, can lead to important problems such as performance degradation or instability in a control system. On the other hand, the switching phenomenon often appears in numerous applications, where abrupt change is inevitable in the system model. Switching behavior in this type of systems can be triggered either by time, or by the state of the system. A theoretical framework to study various features of switched systems in the presence of uncertainty and time-delay (both neutral and retarded) would be of particular interest in important applications such as network control systems, power systems and communication networks. To address the problem of robust stability for the class of uncertain switched systems with unknown time-varying delay discussed above, sufficient conditions in the form of linear matrix inequalities (LMI) are derived. An adaptive switching control algorithm is then proposed for the stabilization of uncertain discrete time-delay systems subject to disturbance. It is assumed that the discrete time-delay system is highly uncertain, such that a single fixed controller cannot stabilize it effectively. Sufficient conditions are provided subsequently for the stability of switched time-delay systems with polytopic-type uncertainties. Moreover, an adaptive control scheme is provided to stabilize the uncertain neutral time-delay systems when the upper bounds on the system uncertainties are not available a priori . Simulations are provided throughout the thesis to support the theoretical result

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Robustness analysis of discrete predictor-based controllers for input-delay systems

    Full text link
    In this article, robustness to model uncertainties are analysed in the context of discrete predictor-based state-feedback controllers for discrete-time input-delay systems with time-varying delay, in an LMI framework. The goal is comparing robustness of predictor-based strategies with respect to other (sub)optimal state feedback ones. A numerical example illustrates that improvements in tolerance to modelling errors can be achieved by using the predictor framework.The authors are grateful for grant nos. DPI2008-06737-C02-01, DPI2008-06731-C02-01, DPI2011-27845-C02-01 and PROMETEO/2008/088 from the Spanish and Valencian governments.González Sorribes, A.; Sala, A.; García Gil, PJ.; Albertos Pérez, P. (2013). Robustness analysis of discrete predictor-based controllers for input-delay systems. International Journal of Systems Science. 44(2):232-239. https://doi.org/10.1080/00207721.2011.600469S232239442Boukas, E.-K. (2006). Discrete-time systems with time-varying time delay: Stability and stabilizability. Mathematical Problems in Engineering, 2006, 1-10. doi:10.1155/mpe/2006/42489Du, D., Jiang, B., & Zhou, S. (2008). Delay-dependent robust stabilisation of uncertain discrete-time switched systems with time-varying state delay. International Journal of Systems Science, 39(3), 305-313. doi:10.1080/00207720701805982El Ghaoui, L., Oustry, F., & AitRami, M. (1997). A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 42(8), 1171-1176. doi:10.1109/9.618250Gao, H., & Chen, T. (2007). New Results on Stability of Discrete-Time Systems With Time-Varying State Delay. IEEE Transactions on Automatic Control, 52(2), 328-334. doi:10.1109/tac.2006.890320Gao, H., Wang, C., Lam, J., & Wang, Y. (2004). Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay. IEE Proceedings - Control Theory and Applications, 151(6), 691-698. doi:10.1049/ip-cta:20040822Gao, H., Chen, T., & Lam, J. (2008). A new delay system approach to network-based control. Automatica, 44(1), 39-52. doi:10.1016/j.automatica.2007.04.020Garcia , P , Castillo , P , Lozano , R and Albertos , P . 2006 . Robustness with Respect to Delay Uncertainties of a Predictor Observer Based Discrete-time Controller . Proceeding of the 45th IEEE Conference on Decision and Control . 2006 . pp. 199 – 204 .Guo , Y and Li , S . 2009 . New Stability Criterion for Discrete-time Systems with Interval Time-varying State Delay . Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference . 2009 . pp. 1342 – 1347 .Hägglund, T. (1996). An industrial dead-time compensating PI controller. Control Engineering Practice, 4(6), 749-756. doi:10.1016/0967-0661(96)00065-2V.J.S. Leite, and Miranda, M.F. (2008), ‘Robust Stabilization of Discrete-time Systems with Time-varying Delay: An LMI Approach’,Mathematical Problems in Engineering, 2008, 15 pages (doi:10.1155/2008/875609)Liu, X. G., Tang, M. L., Martin, R. R., & Wu, M. (2006). Delay-dependent robust stabilisation of discrete-time systems with time-varying delay. IEE Proceedings - Control Theory and Applications, 153(6), 689-702. doi:10.1049/ip-cta:20050223Lozano, R., Castillo, P., Garcia, P., & Dzul, A. (2004). Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica, 40(4), 603-612. doi:10.1016/j.automatica.2003.10.007Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Michiels, W., & Niculescu, S.-I. (2003). On the delay sensitivity of Smith Predictors. International Journal of Systems Science, 34(8-9), 543-551. doi:10.1080/00207720310001609057Palmor, Z.J. (1996), ‘Time-delay Compensation – Smith Predictor and Its Modifications’, inThe Control Handbook, ed. W.S. Levine, Boca Raton: CRC Press, pp. 224–237Pan, Y.-J., Marquez, H. J., & Chen, T. (2006). Stabilization of remote control systems with unknown time varying delays by LMI techniques. International Journal of Control, 79(7), 752-763. doi:10.1080/00207170600654554Richard, J.-P. (2003). Time-delay systems: an overview of some recent advances and open problems. Automatica, 39(10), 1667-1694. doi:10.1016/s0005-1098(03)00167-5Wang, Q.-G., Lee, T. H., & Tan, K. K. (1999). Finite-Spectrum Assignment for Time-Delay Systems. Lecture Notes in Control and Information Sciences. doi:10.1007/978-1-84628-531-8He, Y., Wu, M., Han, Q.-L., & She, J.-H. (2008). Delay-dependentH∞control of linear discrete-time systems with an interval-like time-varying delay. International Journal of Systems Science, 39(4), 427-436. doi:10.1080/00207720701832531Yue, D., & Han, Q.-L. (2005). Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 41(2), 233-240. doi:10.1016/j.automatica.2004.09.006Zhang, B., Xu, S., & Zou, Y. (2008). Improved stability criterion and its applications in delayed controller design for discrete-time systems. Automatica, 44(11), 2963-2967. doi:10.1016/j.automatica.2008.04.01

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    • …
    corecore