57 research outputs found

    LMI Approach to Exponential Stability and Almost Sure Exponential Stability for Stochastic Fuzzy Markovian-Jumping Cohen-Grossberg Neural Networks with Nonlinear p-Laplace Diffusion

    Get PDF
    The robust exponential stability of delayed fuzzy Markovian-jumping Cohen-Grossberg neural networks (CGNNs) with nonlinear p-Laplace diffusion is studied. Fuzzy mathematical model brings a great difficulty in setting up LMI criteria for the stability, and stochastic functional differential equations model with nonlinear diffusion makes it harder. To study the stability of fuzzy CGNNs with diffusion, we have to construct a Lyapunov-Krasovskii functional in non-matrix form. But stochastic mathematical formulae are always described in matrix forms. By way of some variational methods in W1,p(Ω), Itô formula, Dynkin formula, the semi-martingale convergence theorem, Schur Complement Theorem, and LMI technique, the LMI-based criteria on the robust exponential stability and almost sure exponential robust stability are finally obtained, the feasibility of which can efficiently be computed and confirmed by computer MatLab LMI toolbox. It is worth mentioning that even corollaries of the main results of this paper improve some recent related existing results. Moreover, some numerical examples are presented to illustrate the effectiveness and less conservatism of the proposed method due to the significant improvement in the allowable upper bounds of time delays

    Stability and synchronization of discrete-time neural networks with switching parameters and time-varying delays

    Get PDF
    published_or_final_versio

    Stability and dissipativity analysis of static neural networks with time delay

    Get PDF
    This paper is concerned with the problems of stability and dissipativity analysis for static neural networks (NNs) with time delay. Some improved delay-dependent stability criteria are established for static NNs with time-varying or time-invariant delay using the delay partitioning technique. Based on these criteria, several delay-dependent sufficient conditions are given to guarantee the dissipativity of static NNs with time delay. All the given results in this paper are not only dependent upon the time delay but also upon the number of delay partitions. Some examples are given to illustrate the effectiveness and reduced conservatism of the proposed results.published_or_final_versio

    Dissipativity Analysis for Discrete Time-Delay Fuzzy Neural Networks With Markovian Jumps

    Full text link

    Combined Convex Technique on Delay-Distribution-Dependent Stability for Delayed Neural Networks

    Get PDF
    Together with the Lyapunov-Krasovskii functional approach and an improved delay-partitioning idea, one novel sufficient condition is derived to guarantee a class of delayed neural networks to be asymptotically stable in the mean-square sense, in which the probabilistic variable delay and both of delay variation limits can be measured. Through combining the reciprocal convex technique and convex technique one, the criterion is presented via LMIs and its solvability heavily depends on the sizes of both time-delay range and its variations, which can become much less conservative than those present ones by thinning the delay intervals. Finally, it can be demonstrated by four numerical examples that our idea reduces the conservatism more effectively than some earlier reported ones

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Dynamical Behaviors of Stochastic Hopfield Neural Networks with Both Time-Varying and Continuously Distributed Delays

    Get PDF
    This paper investigates dynamical behaviors of stochastic Hopfield neural networks with both time-varying and continuously distributed delays. By employing the Lyapunov functional theory and linear matrix inequality, some novel criteria on asymptotic stability, ultimate boundedness, and weak attractor are derived. Finally, an example is given to illustrate the correctness and effectiveness of our theoretical results

    State Estimation for Fractional-Order Complex Dynamical Networks with Linear Fractional Parametric Uncertainty

    Get PDF
    This paper deals with state estimation problem for a class of fractional-order complex dynamical networks with parametric uncertainty. The parametric uncertainty is assumed to be of linear fractional form. Firstly, based on the properties of Kronecker product and the stability of fractional-order system, a sufficient condition is derived for robust asymptotic stability of linear fractional-order augmented system. Secondly, state estimation problem is then studied for the same fractional-order complex networks, where the purpose is to design a state estimator to estimate the network state through available output measurement, the existence conditions of designing state estimator are derived using matrix's singular value decomposition and LMI techniques. These conditions are in the form of linear matrix inequalities which can be readily solved by applying the LMI toolbox. Finally, two numerical examples are provided to demonstrate the validity of our approach

    Event-Triggered State Estimation for a Class of Delayed Recurrent Neural Networks with Sampled-Data Information

    Get PDF
    The paper investigates the state estimation problem for a class of recurrent neural networks with sampled-data information and time-varying delays. The main purpose is to estimate the neuron states through output sampled measurement; a novel event-triggered scheme is proposed, which can lead to a significant reduction of the information communication burden in the network; the feature of this scheme is that whether or not the sampled data should be transmitted is determined by the current sampled data and the error between the current sampled data and the latest transmitted data. By using a delayed-input approach, the error dynamic system is equivalent to a dynamic system with two different time-varying delays. Based on the Lyapunov-krasovskii functional approach, a state estimator of the considered neural networks can be achieved by solving some linear matrix inequalities, which can be easily facilitated by using the standard numerical software. Finally, a numerical example is provided to show the effectiveness of the proposed event-triggered scheme
    corecore