58,066 research outputs found

    Robust Stability Assessment in the Presence of Load Dynamics Uncertainty

    Get PDF
    Dynamic response of loads has a significant effect on system stability and directly determines the stability margin of the operating point. Inherent uncertainty and natural variability of load models make the stability assessment especially difficult and may compromise the security of the system. We propose a novel mathematical “robust stability” criterion for the assessment of small-signal stability of operating points. Whenever the criterion is satisfied for a given operating point, it provides mathematical guarantees that the operating point will be stable with respect to small disturbances for any dynamic response of the loads. The criterion can be naturally used for identification of operating regions secure from the occurrence of Hopf bifurcation. Several possible applications of the criterion are discussed, most importantly the concept of robust stability assessment (RSA), that could be integrated in dynamic security assessment packages and used in contingency screening and other planning and operational studies

    A Framework for Robust Assessment of Power Grid Stability and Resiliency

    Full text link
    Security assessment of large-scale, strongly nonlinear power grids containing thousands to millions of interacting components is a computationally expensive task. Targeting at reducing the computational cost, this paper introduces a framework for constructing a robust assessment toolbox that can provide mathematically rigorous certificates for the grids' stability in the presence of variations in power injections, and for the grids' ability to withstand a bunch sources of faults. By this toolbox we can "off-line" screen a wide range of contingencies or power injection profiles, without reassessing the system stability on a regular basis. In particular, we formulate and solve two novel robust stability and resiliency assessment problems of power grids subject to the uncertainty in equilibrium points and uncertainty in fault-on dynamics. Furthermore, we bring in the quadratic Lyapunov functions approach to transient stability assessment, offering real-time construction of stability/resiliency certificates and real-time stability assessment. The effectiveness of the proposed techniques is numerically illustrated on a number of IEEE test cases

    The HIRM+ Flight Dynamics Model

    Get PDF
    The major objective of the GARTEUR Action Group on Analysis Techniques for Clearance of Flight Control Laws FM(AG-11) is the improvement of the flight clearance process by increased automation of the tools used for modelbased analysis of the aircraft’s dynamical behaviour. What is finally needed are techniques for faster detection of the worst case combination of parameter values and manoeuvre cases, from which the flight clearance restrictions are be derived. The basis for such an analysis are accurate mathematical models of the controlled aircraft. In this chapter the HIRM+ flight dynamics model is described as one of the benchmark military aircraft models used within FM(AG-11). HIRM+ originates from the HIRM (High Incidence Research Model) developed within the GARTEUR Action Group on Robust Flight Control M(AG-08). In building the HIRM+, additional emphasis has been put on realistic modelling of parametric uncertainties

    Data-driven Identification and Prediction of Power System Dynamics Using Linear Operators

    Get PDF
    In this paper, we propose linear operator theoretic framework involving Koopman operator for the data-driven identification of power system dynamics. We explicitly account for noise in the time series measurement data and propose robust approach for data-driven approximation of Koopman operator for the identification of nonlinear power system dynamics. The identified model is used for the prediction of state trajectories in the power system. The application of the framework is illustrated using an IEEE nine bus test system.Comment: Accepted for publication in IEEE Power and Energy System General Meeting 201

    Nonlinear and adaptive control

    Get PDF
    The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies

    Estimating Dynamic Load Parameters from Ambient PMU Measurements

    Full text link
    In this paper, a novel method to estimate dynamic load parameters via ambient PMU measurements is proposed. Unlike conventional parameter identification methods, the proposed algorithm does not require the existence of large disturbance to power systems, and is able to provide up-to-date dynamic load parameters consistently and continuously. The accuracy and robustness of the method are demonstrated through numerical simulations.Comment: The paper has been accepted by IEEE PES general meeting 201

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Using Effective Generator Impedance for Forced Oscillation Source Location

    Full text link
    Locating the sources of forced low-frequency oscillations in power systems is an important problem. A number of proposed methods demonstrate their practical usefulness, but many of them rely on strong modeling assumptions and provide poor performance in certain cases for reasons still not well understood. This paper proposes a systematic method for locating the source of a forced oscillation by considering a generator's response to fluctuations of its terminal voltages and currents. It is shown that a generator can be represented as an effective admittance matrix with respect to low-frequency oscillations, and an explicit form for this matrix, for various generator models, is derived. Furthermore, it is shown that a source generator, in addition to its effective admittance, is characterized by the presence of an effective current source thus giving a natural qualitative distinction between source and nonsource generators. Detailed descriptions are given of a source detection procedure based on this developed representation, and the method's effectiveness is confirmed by simulations on the recommended testbeds (eg. WECC 179-bus system). This method is free of strong modeling assumptions and is also shown to be robust in the presence of measurement noise and generator parameter uncertainty.Comment: 13 page
    • …
    corecore