3,495 research outputs found

    A Subband-Based SVM Front-End for Robust ASR

    Full text link
    This work proposes a novel support vector machine (SVM) based robust automatic speech recognition (ASR) front-end that operates on an ensemble of the subband components of high-dimensional acoustic waveforms. The key issues of selecting the appropriate SVM kernels for classification in frequency subbands and the combination of individual subband classifiers using ensemble methods are addressed. The proposed front-end is compared with state-of-the-art ASR front-ends in terms of robustness to additive noise and linear filtering. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of the proposed subband based SVM front-end: it outperforms the standard cepstral front-end in the presence of noise and linear filtering for signal-to-noise ratio (SNR) below 12-dB. A combination of the proposed front-end with a conventional front-end such as MFCC yields further improvements over the individual front ends across the full range of noise levels

    DNN adaptation by automatic quality estimation of ASR hypotheses

    Full text link
    In this paper we propose to exploit the automatic Quality Estimation (QE) of ASR hypotheses to perform the unsupervised adaptation of a deep neural network modeling acoustic probabilities. Our hypothesis is that significant improvements can be achieved by: i)automatically transcribing the evaluation data we are currently trying to recognise, and ii) selecting from it a subset of "good quality" instances based on the word error rate (WER) scores predicted by a QE component. To validate this hypothesis, we run several experiments on the evaluation data sets released for the CHiME-3 challenge. First, we operate in oracle conditions in which manual transcriptions of the evaluation data are available, thus allowing us to compute the "true" sentence WER. In this scenario, we perform the adaptation with variable amounts of data, which are characterised by different levels of quality. Then, we move to realistic conditions in which the manual transcriptions of the evaluation data are not available. In this case, the adaptation is performed on data selected according to the WER scores "predicted" by a QE component. Our results indicate that: i) QE predictions allow us to closely approximate the adaptation results obtained in oracle conditions, and ii) the overall ASR performance based on the proposed QE-driven adaptation method is significantly better than the strong, most recent, CHiME-3 baseline.Comment: Computer Speech & Language December 201

    Compensation of Nuisance Factors for Speaker and Language Recognition

    Get PDF
    The variability of the channel and environment is one of the most important factors affecting the performance of text-independent speaker verification systems. The best techniques for channel compensation are model based. Most of them have been proposed for Gaussian mixture models, while in the feature domain blind channel compensation is usually performed. The aim of this work is to explore techniques that allow more accurate intersession compensation in the feature domain. Compensating the features rather than the models has the advantage that the transformed parameters can be used with models of a different nature and complexity and for different tasks. In this paper, we evaluate the effects of the compensation of the intersession variability obtained by means of the channel factors approach. In particular, we compare channel variability modeling in the usual Gaussian mixture model domain, and our proposed feature domain compensation technique. We show that the two approaches lead to similar results on the NIST 2005 Speaker Recognition Evaluation data with a reduced computation cost. We also report the results of a system, based on the intersession compensation technique in the feature space that was among the best participants in the NIST 2006 Speaker Recognition Evaluation. Moreover, we show how we obtained significant performance improvement in language recognition by estimating and compensating, in the feature domain, the distortions due to interspeaker variability within the same language. Index Terms—Factor anal

    Multilevel and session variability compensated language recognition: ATVS-UAM systems at NIST LRE 2009

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. Gonzalez-Dominguez, I. Lopez-Moreno, J. Franco-Pedroso, D. Ramos, D. T. Toledano, and J. Gonzalez-Rodriguez, "Multilevel and Session Variability Compensated Language Recognition: ATVS-UAM Systems at NIST LRE 2009" IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 6, pp. 1084 – 1093, December 2010This work presents the systems submitted by the ATVS Biometric Recognition Group to the 2009 Language Recognition Evaluation (LRE’09), organized by NIST. New challenges included in this LRE edition can be summarized by three main differences with respect to past evaluations. Firstly, the number of languages to be recognized expanded to 23 languages from 14 in 2007, and 7 in 2005. Secondly, the data variability has been increased by including telephone speech excerpts extracted from Voice of America (VOA) radio broadcasts through Internet in addition to Conversational Telephone Speech (CTS). The third difference was the volume of data, involving in this evaluation up to 2 terabytes of speech data for development, which is an order of magnitude greater than past evaluations. LRE’09 thus required participants to develop robust systems able not only to successfully face the session variability problem but also to do it with reasonable computational resources. ATVS participation consisted of state-of-the-art acoustic and high-level systems focussing on these issues. Furthermore, the problem of finding a proper combination and calibration of the information obtained at different levels of the speech signal was widely explored in this submission. In this work, two original contributions were developed. The first contribution was applying a session variability compensation scheme based on Factor Analysis (FA) within the statistics domain into a SVM-supervector (SVM-SV) approach. The second contribution was the employment of a novel backend based on anchor models in order to fuse individual systems prior to one-vs-all calibration via logistic regression. Results both in development and evaluation corpora show the robustness and excellent performance of the submitted systems, exemplified by our system ranked 2nd in the 30 second open-set condition, with remarkably scarce computational resources.This work has been supported by the Spanish Ministry of Education under project TEC2006-13170-C02-01. Javier Gonzalez-Dominguez also thanks Spanish Ministry of Education for supporting his doctoral research under project TEC2006-13141-C03-03. Special thanks are given to Dr. David Van Leeuwen from TNO Human Factors (Utrech, The Netherlands) for his strong collaboration, valuable discussions and ideas. Also, authors thank to Dr. Patrick Lucey for his final support on (non-target) Australian English review of the manuscript

    The impact of the Lombard effect on audio and visual speech recognition systems

    Get PDF
    When producing speech in noisy backgrounds talkers reflexively adapt their speaking style in ways that increase speech-in-noise intelligibility. This adaptation, known as the Lombard effect, is likely to have an adverse effect on the performance of automatic speech recognition systems that have not been designed to anticipate it. However, previous studies of this impact have used very small amounts of data and recognition systems that lack modern adaptation strategies. This paper aims to rectify this by using a new audio-visual Lombard corpus containing speech from 54 different speakers – significantly larger than any previously available – and modern state-of-the-art speech recognition techniques. The paper is organised as three speech-in-noise recognition studies. The first examines the case in which a system is presented with Lombard speech having been exclusively trained on normal speech. It was found that the Lombard mismatch caused a significant decrease in performance even if the level of the Lombard speech was normalised to match the level of normal speech. However, the size of the mismatch was highly speaker-dependent thus explaining conflicting results presented in previous smaller studies. The second study compares systems trained in matched conditions (i.e., training and testing with the same speaking style). Here the Lombard speech affords a large increase in recognition performance. Part of this is due to the greater energy leading to a reduction in noise masking, but performance improvements persist even after the effect of signal-to-noise level difference is compensated. An analysis across speakers shows that the Lombard speech energy is spectro-temporally distributed in a way that reduces energetic masking, and this reduction in masking is associated with an increase in recognition performance. The final study repeats the first two using a recognition system training on visual speech. In the visual domain, performance differences are not confounded by differences in noise masking. It was found that in matched-conditions Lombard speech supports better recognition performance than normal speech. The benefit was consistently present across all speakers but to a varying degree. Surprisingly, the Lombard benefit was observed to a small degree even when training on mismatched non-Lombard visual speech, i.e., the increased clarity of the Lombard speech outweighed the impact of the mismatch. The paper presents two generally applicable conclusions: i) systems that are designed to operate in noise will benefit from being trained on well-matched Lombard speech data, ii) the results of speech recognition evaluations that employ artificial speech and noise mixing need to be treated with caution: they are overly-optimistic to the extent that they ignore a significant source of mismatch but at the same time overly-pessimistic in that they do not anticipate the potential increased intelligibility of the Lombard speaking style

    Are words easier to learn from infant- than adult-directed speech? A quantitative corpus-based investigation

    Get PDF
    We investigate whether infant-directed speech (IDS) could facilitate word form learning when compared to adult-directed speech (ADS). To study this, we examine the distribution of word forms at two levels, acoustic and phonological, using a large database of spontaneous speech in Japanese. At the acoustic level we show that, as has been documented before for phonemes, the realizations of words are more variable and less discriminable in IDS than in ADS. At the phonological level, we find an effect in the opposite direction: the IDS lexicon contains more distinctive words (such as onomatopoeias) than the ADS counterpart. Combining the acoustic and phonological metrics together in a global discriminability score reveals that the bigger separation of lexical categories in the phonological space does not compensate for the opposite effect observed at the acoustic level. As a result, IDS word forms are still globally less discriminable than ADS word forms, even though the effect is numerically small. We discuss the implication of these findings for the view that the functional role of IDS is to improve language learnability.Comment: Draf
    • …
    corecore