4,527 research outputs found

    Anti-spoofing Methods for Automatic SpeakerVerification System

    Full text link
    Growing interest in automatic speaker verification (ASV)systems has lead to significant quality improvement of spoofing attackson them. Many research works confirm that despite the low equal er-ror rate (EER) ASV systems are still vulnerable to spoofing attacks. Inthis work we overview different acoustic feature spaces and classifiersto determine reliable and robust countermeasures against spoofing at-tacks. We compared several spoofing detection systems, presented so far,on the development and evaluation datasets of the Automatic SpeakerVerification Spoofing and Countermeasures (ASVspoof) Challenge 2015.Experimental results presented in this paper demonstrate that the useof magnitude and phase information combination provides a substantialinput into the efficiency of the spoofing detection systems. Also wavelet-based features show impressive results in terms of equal error rate. Inour overview we compare spoofing performance for systems based on dif-ferent classifiers. Comparison results demonstrate that the linear SVMclassifier outperforms the conventional GMM approach. However, manyresearchers inspired by the great success of deep neural networks (DNN)approaches in the automatic speech recognition, applied DNN in thespoofing detection task and obtained quite low EER for known and un-known type of spoofing attacks.Comment: 12 pages, 0 figures, published in Springer Communications in Computer and Information Science (CCIS) vol. 66

    Optimization of data-driven filterbank for automatic speaker verification

    Get PDF
    Most of the speech processing applications use triangular filters spaced in mel-scale for feature extraction. In this paper, we propose a new data-driven filter design method which optimizes filter parameters from a given speech data. First, we introduce a frame-selection based approach for developing speech-signal-based frequency warping scale. Then, we propose a new method for computing the filter frequency responses by using principal component analysis (PCA). The main advantage of the proposed method over the recently introduced deep learning based methods is that it requires very limited amount of unlabeled speech-data. We demonstrate that the proposed filterbank has more speaker discriminative power than commonly used mel filterbank as well as existing data-driven filterbank. We conduct automatic speaker verification (ASV) experiments with different corpora using various classifier back-ends. We show that the acoustic features created with proposed filterbank are better than existing mel-frequency cepstral coefficients (MFCCs) and speech-signal-based frequency cepstral coefficients (SFCCs) in most cases. In the experiments with VoxCeleb1 and popular i-vector back-end, we observe 9.75% relative improvement in equal error rate (EER) over MFCCs. Similarly, the relative improvement is 4.43% with recently introduced x-vector system. We obtain further improvement using fusion of the proposed method with standard MFCC-based approach.Comment: Published in Digital Signal Processing journal (Elsevier

    Estimation of glottal closure instants in voiced speech using the DYPSA algorithm

    Get PDF
    Published versio

    Text-independent speaker recognition

    Get PDF
    This research presents new text-independent speaker recognition system with multivariate tools such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) embedded into the recognition system after the feature extraction step. The proposed approach evaluates the performance of such a recognition system when trained and used in clean and noisy environments. Additive white Gaussian noise and convolutive noise are added. Experiments were carried out to investigate the robust ability of PCA and ICA using the designed approach. The application of ICA improved the performance of the speaker recognition model when compared to PCA. Experimental results show that use of ICA enabled extraction of higher order statistics thereby capturing speaker dependent statistical cues in a text-independent recognition system. The results show that ICA has a better de-correlation and dimension reduction property than PCA. To simulate a multi environment system, we trained our model such that every time a new speech signal was read, it was contaminated with different types of noises and stored in the database. Results also show that ICA outperforms PCA under adverse environments. This is verified by computing recognition accuracy rates obtained when the designed system was tested for different train and test SNR conditions with additive white Gaussian noise and test delay conditions with echo effect

    Speaker segmentation and clustering

    Get PDF
    This survey focuses on two challenging speech processing topics, namely: speaker segmentation and speaker clustering. Speaker segmentation aims at finding speaker change points in an audio stream, whereas speaker clustering aims at grouping speech segments based on speaker characteristics. Model-based, metric-based, and hybrid speaker segmentation algorithms are reviewed. Concerning speaker clustering, deterministic and probabilistic algorithms are examined. A comparative assessment of the reviewed algorithms is undertaken, the algorithm advantages and disadvantages are indicated, insight to the algorithms is offered, and deductions as well as recommendations are given. Rich transcription and movie analysis are candidate applications that benefit from combined speaker segmentation and clustering. © 2007 Elsevier B.V. All rights reserved

    Speaker Recognition using Supra-segmental Level Excitation Information

    Get PDF
    Speaker specific information present in the excitation signal is mostly viewed from sub-segmental, segmental and supra-segmental levels. In this work, the supra-segmental level information is explored for recognizing speakers. Earlier study has shown that, combined use of pitch and epoch strength vectors provides useful supra-segmental information. However, the speaker recognition accuracy achieved by supra-segmental level feature is relatively poor than other levels source information. May be the modulation information present at the supra-segmental level of the excitation signal is not manifested properly in pith and epoch strength vectors. We propose a method to model the supra-segmental level modulation information from residual mel frequency cepstral coefficient (R-MFCC) trajectories. The evidences from R-MFCC trajectories combined with pitch and epoch strength vectors are proposed to represent supra-segmental information. Experimental results show that compared to pitch and epoch strength vectors, the proposed approach provides relatively improved performance. Further, the proposed supra-segmental level information is relatively more complimentary to other levels information
    corecore