430 research outputs found

    Non-recurrent Traffic Congestion Detection with a Coupled Scalable Bayesian Robust Tensor Factorization Model

    Full text link
    Non-recurrent traffic congestion (NRTC) usually brings unexpected delays to commuters. Hence, it is critical to accurately detect and recognize the NRTC in a real-time manner. The advancement of road traffic detectors and loop detectors provides researchers with a large-scale multivariable temporal-spatial traffic data, which allows the deep research on NRTC to be conducted. However, it remains a challenging task to construct an analytical framework through which the natural spatial-temporal structural properties of multivariable traffic information can be effectively represented and exploited to better understand and detect NRTC. In this paper, we present a novel analytical training-free framework based on coupled scalable Bayesian robust tensor factorization (Coupled SBRTF). The framework can couple multivariable traffic data including traffic flow, road speed, and occupancy through sharing a similar or the same sparse structure. And, it naturally captures the high-dimensional spatial-temporal structural properties of traffic data by tensor factorization. With its entries revealing the distribution and magnitude of NRTC, the shared sparse structure of the framework compasses sufficiently abundant information about NRTC. While the low-rank part of the framework, expresses the distribution of general expected traffic condition as an auxiliary product. Experimental results on real-world traffic data show that the proposed method outperforms coupled Bayesian robust principal component analysis (coupled BRPCA), the rank sparsity tensor decomposition (RSTD), and standard normal deviates (SND) in detecting NRTC. The proposed method performs even better when only traffic data in weekdays are utilized, and hence can provide more precise estimation of NRTC for daily commuters

    Spatio-Temporal Tensor Sketching via Adaptive Sampling

    Full text link
    Mining massive spatio-temporal data can help a variety of real-world applications such as city capacity planning, event management, and social network analysis. The tensor representation can be used to capture the correlation between space and time and simultaneously exploit the latent structure of the spatial and temporal patterns in an unsupervised fashion. However, the increasing volume of spatio-temporal data has made it prohibitively expensive to store and analyze using tensor factorization. In this paper, we propose SkeTenSmooth, a novel tensor factorization framework that uses adaptive sampling to compress the tensor in a temporally streaming fashion and preserves the underlying global structure. SkeTenSmooth adaptively samples incoming tensor slices according to the detected data dynamics. Thus, the sketches are more representative and informative of the tensor dynamic patterns. In addition, we propose a robust tensor factorization method that can deal with the sketched tensor and recover the original patterns. Experiments on the New York City Yellow Taxi data show that SkeTenSmooth greatly reduces the memory cost and outperforms random sampling and fixed rate sampling method in terms of retaining the underlying patterns

    Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation

    Full text link
    Effective management of urban traffic is important for any smart city initiative. Therefore, the quality of the sensory traffic data is of paramount importance. However, like any sensory data, urban traffic data are prone to imperfections leading to missing measurements. In this paper, we focus on inter-region traffic data completion. We model the inter-region traffic as a spatiotemporal tensor that suffers from missing measurements. To recover the missing data, we propose an enhanced CANDECOMP/PARAFAC (CP) completion approach that considers the urban and temporal aspects of the traffic. To derive the urban characteristics, we divide the area of study into regions. Then, for each region, we compute urban feature vectors inspired from biodiversity which are used to compute the urban similarity matrix. To mine the temporal aspect, we first conduct an entropy analysis to determine the most regular time-series. Then, we conduct a joint Fourier and correlation analysis to compute its periodicity and construct the temporal matrix. Both urban and temporal matrices are fed into a modified CP-completion objective function. To solve this objective, we propose an alternating least square approach that operates on the vectorized version of the inputs. We conduct comprehensive comparative study with two evaluation scenarios. In the first one, we simulate random missing values. In the second scenario, we simulate missing values at a given area and time duration. Our results demonstrate that our approach provides effective recovering performance reaching 26% improvement compared to state-of-art CP approaches and 35% compared to state-of-art generative model-based approaches

    Low-Rank and Sparse Enhanced Tucker Decomposition for Tensor Completion

    Full text link
    Tensor completion refers to the task of estimating the missing data from an incomplete measurement or observation, which is a core problem frequently arising from the areas of big data analysis, computer vision, and network engineering. Due to the multidimensional nature of high-order tensors, the matrix approaches, e.g., matrix factorization and direct matricization of tensors, are often not ideal for tensor completion and recovery. Exploiting the potential periodicity and inherent correlation properties appeared in real-world tensor data, in this paper, we shall incorporate the low-rank and sparse regularization technique to enhance Tucker decomposition for tensor completion. A series of computational experiments on real-world datasets, including internet traffic data, color images, and face recognition, show that our model performs better than many existing state-of-the-art matricization and tensorization approaches in terms of achieving higher recovery accuracy.Comment: 14 pages and 14 figures and 1 tabl

    Short-term Road Traffic Prediction based on Deep Cluster at Large-scale Networks

    Full text link
    Short-term road traffic prediction (STTP) is one of the most important modules in Intelligent Transportation Systems (ITS). However, network-level STTP still remains challenging due to the difficulties both in modeling the diverse traffic patterns and tacking high-dimensional time series with low latency. Therefore, a framework combining with a deep clustering (DeepCluster) module is developed for STTP at largescale networks in this paper. The DeepCluster module is proposed to supervise the representation learning in a visualized way from the large unlabeled dataset. More specifically, to fully exploit the traffic periodicity, the raw series is first split into a number of sub-series for triplets generation. The convolutional neural networks (CNNs) with triplet loss are utilized to extract the features of shape by transferring the series into visual images. The shape-based representations are then used for road segments clustering. Thereafter, motivated by the fact that the road segments in a group have similar patterns, a model sharing strategy is further proposed to build recurrent NNs (RNNs)-based predictions through a group-based model (GM), instead of individual-based model (IM) in which one model are built for one road exclusively. Our framework can not only significantly reduce the number of models and cost, but also increase the number of training data and the diversity of samples. In the end, we evaluate the proposed framework over the network of Liuli Bridge in Beijing. Experimental results show that the DeepCluster can effectively cluster the road segments and GM can achieve comparable performance against the IM with less number of models.Comment: 12 pages, 15 figures, journa

    Network Anomaly Detection based on Tensor Decomposition

    Full text link
    The problem of detecting anomalies in time series from network measurements has been widely studied and is a topic of fundamental importance. Many anomaly detection methods are based on packet inspection collected at the network core routers, with consequent disadvantages in terms of computational cost and privacy. We propose an alternative method in which packet header inspection is not needed. The method is based on the extraction of a normal subspace obtained by the tensor decomposition technique considering the correlation between different metrics. We propose a new approach for online tensor decomposition where changes in the normal subspace can be tracked efficiently. Another advantage of our proposal is the interpretability of the obtained models. The flexibility of the method is illustrated by applying it to two distinct examples, both using actual data collected on residential routers

    Detailed 2D-3D Joint Representation for Human-Object Interaction

    Full text link
    Human-Object Interaction (HOI) detection lies at the core of action understanding. Besides 2D information such as human/object appearance and locations, 3D pose is also usually utilized in HOI learning since its view-independence. However, rough 3D body joints just carry sparse body information and are not sufficient to understand complex interactions. Thus, we need detailed 3D body shape to go further. Meanwhile, the interacted object in 3D is also not fully studied in HOI learning. In light of these, we propose a detailed 2D-3D joint representation learning method. First, we utilize the single-view human body capture method to obtain detailed 3D body, face and hand shapes. Next, we estimate the 3D object location and size with reference to the 2D human-object spatial configuration and object category priors. Finally, a joint learning framework and cross-modal consistency tasks are proposed to learn the joint HOI representation. To better evaluate the 2D ambiguity processing capacity of models, we propose a new benchmark named Ambiguous-HOI consisting of hard ambiguous images. Extensive experiments in large-scale HOI benchmark and Ambiguous-HOI show impressive effectiveness of our method. Code and data are available at https://github.com/DirtyHarryLYL/DJ-RN.Comment: Accepted to CVPR 2020, supplementary materials included, code available:https://github.com/DirtyHarryLYL/DJ-R

    Network of Tensor Time Series

    Full text link
    Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.Comment: Accepted by WWW'202

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV
    corecore