5,311 research outputs found

    Does the spacecraft trajectory strongly affect the detection of magnetic clouds?

    Get PDF
    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) where a magnetic flux rope is detected. Is the difference between MCs and ICMEs without detected flux rope intrinsic or rather due to an observational bias? As the spacecraft has no relationship with the MC trajectory, the frequency distribution of MCs versus the spacecraft distance to the MCs axis is expected to be approximately flat. However, Lepping and Wu (2010) confirmed that it is a strongly decreasing function of the estimated impact parameter. Is a flux rope more frequently undetected for larger impact parameter? In order to answer the questions above, we explore the parameter space of flux rope models, especially the aspect ratio, boundary shape, and current distribution. The proposed models are analyzed as MCs by fitting a circular linear force-free field to the magnetic field computed along simulated crossings. We find that the distribution of the twist within the flux rope, the non-detection due to too low field rotation angle or magnitude are only weakly affecting the expected frequency distribution of MCs versus impact parameter. However, the estimated impact parameter is increasingly biased to lower values as the flux-rope cross section is more elongated orthogonally to the crossing trajectory. The observed distribution of MCs is a natural consequence of a flux-rope cross section flattened in average by a factor 2 to 3 depending on the magnetic twist profile. However, the faster MCs at 1 AU, with V>550 km/s, present an almost uniform distribution of MCs vs. impact parameter, which is consistent with round shaped flux ropes, in contrast with the slower ones. We conclude that either most of the non-MC ICMEs are encountered outside their flux rope or near the leg region, or they do not contain any

    Cosmic Optical Background: the View from Pioneer 10/11

    Full text link
    We present the new constraints on the cosmic optical background (COB) obtained from an analysis of the Pioneer 10/11 Imaging Photopolarimeter (IPP) data. After careful examination of data quality, the usable measurements free from the zodiacal light are integrated into sky maps at the blue (~0.44 um) and red (~0.64 um) bands. Accurate starlight subtraction is achieved by referring to all-sky star catalogs and a Galactic stellar population synthesis model down to 32.0 mag. We find that the residual light is separated into two components: one component shows a clear correlation with thermal 100 um brightness, while another betrays a constant level in the lowest 100 um brightness region. Presence of the second component is significant after all the uncertainties and possible residual light in the Galaxy are taken into account, thus it most likely has the extragalactic origin (i.e., the COB). The derived COB brightness is (1.8 +/- 0.9) x 10^(-9) and (1.2 +/- 0.9) x 10^(-9) erg/s/cm2/sr/A at the blue and red band, respectively, or 7.9 +/- 4.0 and 7.7 +/- 5.8 nW/m2/sr. Based on a comparison with the integrated brightness of galaxies, we conclude that the bulk of the COB is comprised of normal galaxies which have already been resolved by the current deepest observations. There seems to be little room for contributions of other populations including "first stars" at these wavelengths. On the other hand, the first component of the IPP residual light represents the diffuse Galactic light (DGL) - scattered starlight by the interstellar dust. We derive the mean DGL-to-100 um brightness ratios of 2.1 x 10^(-3) and 4.6 x 10^(-3) at the two bands, which are roughly consistent with the previous observations toward denser dust regions. Extended red emission in the diffuse interstellar medium is also confirmed.Comment: Accepted for publication in the Astrophysical Journal; Typos correcte

    Are There Different Populations of Flux Ropes in the Solar Wind?

    Full text link
    Flux ropes are twisted magnetic structures, which can be detected by in situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope population. As such, are there different populations of flux ropes? The answer is positive, and is the result of the analysis of four lists of flux ropes, including magnetic clouds (MCs), observed at 1 AU. The in situ data for the four lists have been fitted with the same cylindrical force-free field model, which provides an estimation of the local flux-rope parameters such as its radius and orientation. Since the flux-rope distributions have a large dynamic range, we go beyond a simple histogram analysis by developing a partition technique that uniformly distributes the statistical fluctuations over the radius range. By doing so, we find that small flux ropes with radius R<0.1 AU have a steep power-law distribution in contrast to the larger flux ropes (identified as MCs), which have a Gaussian-like distribution. Next, from four CME catalogs, we estimate the expected flux-rope frequency per year at 1 AU. We find that the predicted numbers are similar to the frequencies of MCs observed in situ. However, we also find that small flux ropes are at least ten times too abundant to correspond to CMEs, even to narrow ones. Investigating the different possible scenarios for the origin of those small flux ropes, we conclude that these twisted structures can be formed by blowout jets in the low corona or in coronal streamers.Comment: 24 pages, 6 figure

    Dust in the Local Interstellar Wind

    Get PDF
    The gas-to-dust mass ratios found for interstellar dust within the Solar System, versus values determined astronomically for the cloud around the Solar System, suggest that large and small interstellar grains have separate histories, and that large interstellar grains preferentially detected by spacecraft are not formed exclusively by mass exchange with nearby interstellar gas. Observations by the Ulysses and Galileo satellites of the mass spectrum and flux rate of interstellar dust within the heliosphere are combined with information about the density, composition, and relative flow speed and direction of interstellar gas in the cloud surrounding the solar system to derive an in situ value for the gas-to-dust mass ratio, Rg/d=94−38+46R_{g/d} = 94^{+46}_{-38}. Hubble observations of the cloud surrounding the solar system yield a gas-to-dust mass ratio of Rg/d=551+61-251 when B-star reference abundances are assumed. The exclusion of small dust grains from the heliosheath and heliosphere regions are modeled, increasing the discrepancy between interstellar and in situ observations. The shock destruction of interstellar grains is considered, and comparisons are made with interplanetary and presolar dust grains.Comment: 87 pages, 9 figures, 6 tables, accepted for publication in Astrophysical Journal. Uses AASTe

    Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu

    Get PDF
    The OSIRIS-REx Asteroid Sample Return Mission is the third mission in NASA's New Frontiers Program and is the first U.S. mission to return samples from an asteroid to Earth. The most important decision ahead of the OSIRIS-REx team is the selection of a prime sample-site on the surface of asteroid (101955) Bennu. Mission success hinges on identifying a site that is safe and has regolith that can readily be ingested by the spacecraft's sampling mechanism. To inform this mission-critical decision, the surface of Bennu is mapped using the OSIRIS-REx Camera Suite and the images are used to develop several foundational data products. Acquiring the necessary inputs to these data products requires observational strategies that are defined specifically to overcome the challenges associated with mapping a small irregular body. We present these strategies in the context of assessing candidate sample-sites at Bennu according to a framework of decisions regarding the relative safety, sampleability, and scientific value across the asteroid's surface. To create data products that aid these assessments, we describe the best practices developed by the OSIRIS-REx team for image-based mapping of irregular small bodies. We emphasize the importance of using 3D shape models and the ability to work in body-fixed rectangular coordinates when dealing with planetary surfaces that cannot be uniquely addressed by body-fixed latitude and longitude.Comment: 31 pages, 10 figures, 2 table
    • …
    corecore