942 research outputs found

    Towards End-to-End Acoustic Localization using Deep Learning: from Audio Signal to Source Position Coordinates

    Full text link
    This paper presents a novel approach for indoor acoustic source localization using microphone arrays and based on a Convolutional Neural Network (CNN). The proposed solution is, to the best of our knowledge, the first published work in which the CNN is designed to directly estimate the three dimensional position of an acoustic source, using the raw audio signal as the input information avoiding the use of hand crafted audio features. Given the limited amount of available localization data, we propose in this paper a training strategy based on two steps. We first train our network using semi-synthetic data, generated from close talk speech recordings, and where we simulate the time delays and distortion suffered in the signal that propagates from the source to the array of microphones. We then fine tune this network using a small amount of real data. Our experimental results show that this strategy is able to produce networks that significantly improve existing localization methods based on \textit{SRP-PHAT} strategies. In addition, our experiments show that our CNN method exhibits better resistance against varying gender of the speaker and different window sizes compared with the other methods.Comment: 18 pages, 3 figures, 8 table

    Exploiting CNNs for Improving Acoustic Source Localization in Noisy and Reverberant Conditions

    Get PDF
    This paper discusses the application of convolutional neural networks (CNNs) to minimum variance distortionless response localization schemes. We investigate the direction of arrival estimation problems in noisy and reverberant conditions using a uniform linear array (ULA). CNNs are used to process the multichannel data from the ULA and to improve the data fusion scheme, which is performed in the steered response power computation. CNNs improve the incoherent frequency fusion of the narrowband response power by weighting the components, reducing the deleterious effects of those components affected by artifacts due to noise and reverberation. The use of CNNs avoids the necessity of previously encoding the multichannel data into selected acoustic cues with the advantage to exploit its ability in recognizing geometrical pattern similarity. Experiments with both simulated and real acoustic data demonstrate the superior localization performance of the proposed SRP beamformer with respect to other state-of-the-art techniques

    Sensitivity-based region selection in the steered response power algorithm

    Get PDF
    The steered response power (SRP) algorithm is a well-studied method for acoustic source localization using a microphone array. Recently, different improvements based on the accumulation of all time difference of arrival (TDOA) information have been proposed in order to achieve spatial resolution scalability of the grid search map and reduce the computational cost. However, the TDOA information distribution is not uniform with respect to the search grid, as it depends on the geometry of the array, the sampling frequency, and the spatial resolution. In this paper, we propose a sensitivity-based region selection SRP (R-SRP) algorithm that exploits the nonuniform TDOA information accumulation on the search grid. First, high and low sensitivity regions of the search space are identified using an array sensitivity estimation procedure; then, through the formulation of a peak-to-peak ratio (PPR) measuring the peak energy distribution in the two regions, the source is classified to belong to a high or to a low sensitivity region, and this information is used to design an ad hoc weighting function of the acoustic power map on which the grid search is performed. Simulated and real experiments show that the proposed method improves the localization performance in comparison to the state-of-the-art

    Studies on noise robust automatic speech recognition

    Get PDF
    Noise in everyday acoustic environments such as cars, traffic environments, and cafeterias remains one of the main challenges in automatic speech recognition (ASR). As a research theme, it has received wide attention in conferences and scientific journals focused on speech technology. This article collection reviews both the classic and novel approaches suggested for noise robust ASR. The articles are literature reviews written for the spring 2009 seminar course on noise robust automatic speech recognition (course code T-61.6060) held at TKK
    • …
    corecore