285 research outputs found

    Fluid Simulation by the Smoothed Particle Hydrodynamics Method: A Survey.

    Get PDF
    This paper presents a survey of Smoothed Particle Hydrodynamics (SPH) and its use in computational fluid dynamics. As a truly mesh-free particle method based upon the Lagrangian formulation, SPH has been applied to a variety of different areas in science, computer graphics and engineering. It has been established as a popular technique for fluid based simulations, and has been extended to successfully simulate various phenomena such as multi-phase flows, rigid and elastic solids, and fluid features such as air bubbles and foam. Various aspects of the method will be discussed: Similarities, advantages and disadvantages in comparison to Eulerian methods; Fundamentals of the SPH method; The use of SPH in fluid simulation; The current trends in SPH. The paper ends with some concluding remarks about the use of SPH in fluid simulations, including some of the more apparent problems, and a discussion on prospects for future work

    Simulation techniques for cosmological simulations

    Get PDF
    Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.Comment: 42 pages, 16 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 12; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Hydrodynamic Simulation of the Cosmological X-ray Background

    Full text link
    (Abridged) We use a hydrodynamic simulation of a LambdaCDM model to predict the extragalactic X-ray background (XRB), focussing on emission from the intergalactic medium (IGM). We also include X-rays from point sources associated with galaxies in the simulation, and make maps of the angular distribution of the emission. We find that filaments in the maps are not evident, being diluted by projection. In the soft (0.5-2 keV) band, the mean intensity of radiation from intergalactic and cluster gas is 2.3*10^-12 ergdeg^-2cm^-2s^-1, 35% of the total soft band emission. This is compatible at the ~1 sigma level with estimates of the unresolved soft background from ROSAT and {\it Chandra}. Only 4% of the hard (2-10 keV) emission is associated with the IGM. Relative to AGN flux, the IGM component peaks at a lower redshift (median z~0.45) so its clustering makes an important contribution to that of the total XRB. The angular correlations on 0.1-10 arcmin scales are significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Although some recent papers have argued that the expected soft band intensity from gas in galaxy, group, and cluster halos would exceed XRB limits unless much of the gas is expelled by supernova feedback, we obtain reasonable compatibility with current observations in a simulation that incorporates cooling, star formation, and only modest feedback. A prediction of our model is that the unresolved portion of the soft XRB will remain mostly unresolved.Comment: Improved referencing of related papers. Submitted to ApJ, 19 pages, 17 postscript figures, most reduced in resolution, emulateapj.sty, for full resolution version, see http://cfa-www.harvard.edu/~rcroft/xray.ps.g

    Real-time High-fidelity Surface Flow Simulation

    Get PDF
    Surface flow phenomena, such as rain water flowing down a tree trunk and progressive water front in a shower room, are common in real life. However, compared with the 3D spatial fluid flow, these surface flow problems have been much less studied in the graphics community. To tackle this research gap, we present an efficient, robust and high-fidelity simulation approach based on the shallow-water equations. Specifically, the standard shallow-water flow model is extended to general triangle meshes with a feature-based bottom friction model, and a series of coherent mathematical formulations are derived to represent the full range of physical effects that are important for real-world surface flow phenomena. In addition, by achieving compatibility with existing 3D fluid simulators and by supporting physically realistic interactions with multiple fluids and solid surfaces, the new model is flexible and readily extensible for coupled phenomena. A wide range of simulation examples are presented to demonstrate the performance of the new approach

    Animated surfaces in physically-based simulation

    Get PDF
    Physics-based animation has become a ubiquitous element in all application areas of computer animation, especially in the entertainment sector. Animation and feature films, video games, and advertisement contain visual effects using physically-based simulation that blend in seamlessly with animated or live-action productions. When simulating deformable materials and fluids, especially liquids, objects are usually represented by animated surfaces. The visual quality of these surfaces not only depends on the actual properties of the surface itself but also on its generation and relation to the underlying simulation. This thesis focuses on surfaces of cloth simulations and fluid simulations based on Smoothed Particle Hydrodynamics (SPH), and contributes to improving the creation of animations by specifying surface shapes, modeling contact of surfaces, and evaluating surface effects of fluids. In many applications, there is a reference given for a surface animation in terms of its shape. Matching a given reference with a simulation is a challenging task and similarity is often determined by visual inspection. The first part of this thesis presents a signature for cloth animations that captures characteristic shapes and their temporal evolution. It combines geometric features with physical properties to represent accurately the typical deformation behavior. The signature enables calculating similarities between animations and is applied to retrieve cloth animations from collections by example. Interactions between particle-based fluids and deformable objects are usually modeled by sampling the deformable objects with particles. When interacting with cloth, however, this would require resampling the surface at large planar deformations and the thickness of cloth would be bound to the particle size. This problem is addressed in this thesis by presenting a two-way coupling technique for cloth and fluids based on the simulation mesh of the textile. It allows robust contact handling and intuitive control of boundary conditions. Further, a solution for intersection-free fluid surface reconstruction at contact with thin flexible objects is presented. The visual quality of particle-based fluid animation highly depends on the properties of the reconstructed surface. An important aspect of the reconstruction method is that it accurately represents the underlying simulation. This thesis presents an evaluation of surfaces at interfaces of SPH simulations incorporating the connection to the simulation model. A typical approach in computer graphics is compared to surface reconstruction used in material sciences. The behavior of free surfaces in fluid animations is highly influenced by surface tension. This thesis presents an evaluation of three types of surface tension models in combination with different pressure force models for SPH to identify the individual characteristics of these models. Systematic tests using a set of benchmark scenes are performed to reveal strengths and weaknesses, and possible areas of applications.Physikalisch basierte Animationen sind ein allgegenwärtiger Teil in jeglichen Anwendungsbereichen der Computeranimation, insbesondere dem Unterhaltungssektor. Animations- und Spielfilme, Videospiele und Werbung enthalten visuelle Effekte unter Verwendung von physikalisch basierter Simulation, die sich nahtlos in Animations- oder Realfilme einfügen. Bei der Simulation von deformierbaren Materialien und Fluiden, insbesondere Flüssigkeiten, werden die Objekte gewöhnlich durch animierte Oberflächen dargestellt. Die visuelle Qualität dieser Oberflächen hängt nicht nur von den Eigenschaften der Fläche selbst ab, sondern auch von deren Erstellung und der Verbindung zu der zugrundeliegenden Simulation. Diese Dissertation widmet sich Oberflächen von Textil- und Fluidsimulationen mit der Methode der Smoothed Particle Hydrodynamics (SPH) und leistet einen Beitrag zur Verbesserung der Erstellung von Animationen durch die Beschreibung von Oberflächenformen, der Modellierung von Kontakt von Oberflächen und der Evaluierung von Oberflächeneffekten von Fluiden. In vielen Anwendungen gibt es eine Referenz für eine Oberflächenanimation, die ihre Form beschreibt. Das Abgleichen einer Referenz mit einer Simulation ist eine große Herausforderung und die Ähnlichkeit wird häufig visuell überprüft. Im ersten Teil der Dissertation wird eine Signatur für Textilanimationen vorgestellt, die charakteristische Formen und ihre zeitliche Veränderung erfasst. Sie ist eine Kombination aus geometrischen Merkmalen und physikalischen Eigenschaften, um das typische Deformationsverhalten genau zu repräsentieren. Die Signatur erlaubt es, Ähnlichkeiten zwischen Animationen zu berechnen, und wird angewendet, um Textilanimationen aus Kollektionen anhand eines Beispiels aufzufinden. Interaktionen zwischen partikelbasierten Fluiden und deformierbaren Objekten werden gewöhnlich durch das Abtasten des deformierbaren Objekts mit Partikeln modelliert. Bei der Interaktion mit Textilien würde dies jedoch ein neues Abtasten bei großen planaren Deformation erfordern und die Stärke des Textils wäre an die Partikelgröße gebunden. Mit diesem Problem befasst sich diese Dissertation und stellt eine Technik für die wechselseitige Kopplung zwischen Textilien und Fluiden vor, die auf dem Simulationsnetz des Textils beruht. Diese erlaubt eine robuste Kontaktbehandlung und intuitive Kontrolle von Randbedingungen. Des Weiteren wird ein Lösungsansatz für eine durchdringungsfreie Oberflächenrekonstruktion beim Kontakt mit dünnen flexiblen Objekten präsentiert. Die visuelle Qualität von partikelbasierten Fluidanimationen hängt stark von den Eigenschaften der rekonstruierten Oberfläche ab. Wichtig bei Rekonstruktionsmethoden ist, dass sie die zugrundeliegende Simulation genau repräsentieren. Die Dissertation präsentiert eine Evaluierung von Oberflächen an Grenzflächen, die den Zusammenhang zum Simulationsmodell miteinbezieht. Ein typischer Ansatz aus der Computergrafik wird mit der Oberflächenrekonstruktion in der Werkstoffkunde verglichen. Das Verhalten von freien Oberflächen in Fluidanimationen wird stark von der Oberflächenspannung beeinflusst. In dieser Dissertation wird eine Evaluierung von drei Oberflächenspannungsmodellen in Kombination mit verschiedenen Druckmodellen für SPH präsentiert, um die Charakteristika der jeweiligen Modelle zu identifizieren. Es werden systematische Tests mit Hilfe von Benchmark-Tests durchgeführt, um Stärken, Schwächen und mögliche Anwendungsbereiche deutlich zu machen

    Power Diagrams and Sparse Paged Grids for High Resolution Adaptive Liquids

    Get PDF
    © ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Aanjaneya, M., Gao, M., Liu, H., Batty, C., & Sifakis, E. (2017). Power Diagrams and Sparse Paged Grids for High Resolution Adaptive Liquids. ACM Trans. Graph., 36(4), 140:1–140:12. https://doi.org/10.1145/3072959.3073625We present an efficient and scalable octree-inspired fluid simulation framework with the flexibility to leverage adaptivity in any part of the computational domain, even when resolution transitions reach the free surface. Our methodology ensures symmetry, definiteness and second order accuracy of the discrete Poisson operator, and eliminates numerical and visual artifacts of prior octree schemes. This is achieved by adapting the operators acting on the octree's simulation variables to reflect the structure and connectivity of a power diagram, which recovers primal-dual mesh orthogonality and eliminates problematic T-junction configurations. We show how such operators can be efficiently implemented using a pyramid of sparsely populated uniform grids, enhancing the regularity of operations and facilitating parallelization. A novel scheme is proposed for encoding the topology of the power diagram in the neighborhood of each octree cell, allowing us to locally reconstruct it on the fly via a lookup table, rather than resorting to costly explicit meshing. The pressure Poisson equation is solved via a highly efficient, matrix-free multigrid preconditioner for Conjugate Gradient, adapted to the power diagram discretization. We use another sparsely populated uniform grid for high resolution interface tracking with a narrow band level set representation. Using the recently introduced SPGrid data structure, sparse uniform grids in both the power diagram discretization and our narrow band level set can be compactly stored and efficiently updated via streaming operations. Additionally, we present enhancements to adaptive level set advection, velocity extrapolation, and the fast marching method for redistancing. Our overall framework gracefully accommodates the task of dynamically adapting the octree topology during simulation. We demonstrate end-to-end simulations of complex adaptive flows in irregularly shaped domains, with tens of millions of degrees of freedom.National Science FoundationNational Sciences and Engineering Research Council of Canad
    • …
    corecore