4,216 research outputs found

    Advanced avionics concepts: Autonomous spacecraft control

    Get PDF
    A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications

    Control of Small Spacecraft by Optimal Output Regulation: A Reinforcement Learning Approach

    Get PDF
    The growing number of noncooperative flying objects has prompted interest in sample-return and space debris removal missions. Current solutions are both costly and largely dependent on specific object identification and capture methods. In this paper, a low-cost modular approach for control of a swarm flight of small satellites in rendezvous and capture missions is proposed by solving the optimal output regulation problem. By integrating the theories of tracking control, adaptive optimal control, and output regulation, the optimal control policy is designed as a feedback-feedforward controller to guarantee the asymptotic tracking of a class of reference input generated by the leader. The estimated state vector of the space object of interest and communication within satellites is assumed to be available. The controller rejects the nonvanishing disturbances injected into the follower satellite while maintaining the closed-loop stability of the overall leader-follower system. The simulation results under the Basilisk-ROS2 framework environment for high-fidelity space applications with accurate spacecraft dynamics, are compared with those from a classical linear quadratic regulator controller, and the results reveal the efficiency and practicality of the proposed method

    Rational physical agent reasoning beyond logic

    No full text
    The paper addresses the problem of defining a theoretical physical agent framework that satisfies practical requirements of programmability by non-programmer engineers and at the same time permitting fast realtime operation of agents on digital computer networks. The objective of the new framework is to enable the satisfaction of performance requirements on autonomous vehicles and robots in space exploration, deep underwater exploration, defense reconnaissance, automated manufacturing and household automation

    Simulations of Galactic Cosmic Rays Impacts on the Herschel/PACS Photoconductor Arrays with Geant4 Code

    Get PDF
    We present results of simulations performed with the Geant4 software code of the effects of Galactic Cosmic Ray impacts on the photoconductor arrays of the PACS instrument. This instrument is part of the ESA-Herschel payload, which will be launched in late 2007 and will operate at the Lagrangian L2 point of the Sun-Earth system. Both the Satellite plus the cryostat (the shield) and the detector act as source of secondary events, affecting the detector performance. Secondary event rates originated within the detector and from the shield are of comparable intensity. The impacts deposit energy on each photoconductor pixel but do not affect the behaviour of nearby pixels. These latter are hit with a probability always lower than 7%. The energy deposited produces a spike which can be hundreds times larger than the noise. We then compare our simulations with proton irradiation tests carried out for one of the detector modules and follow the detector behaviour under 'real' conditions.Comment: paper submitted to Experimental Astronomy in March 200

    NASA Automated Rendezvous and Capture Review. Executive summary

    Get PDF
    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure

    Directed Energy Interception of Satellites

    Full text link
    High power Earth and orbital-based directed energy (DE) systems pose a potential hazard to Earth orbiting spacecraft. The use of very high power, large aperture DE systems to propel spacecraft is being pursued as the only known, feasible method to achieve relativistic flight in our NASA Starlight and Breakthrough Starshot programs. In addition, other beamed power mission scenarios, such as orbital debris removal and our NASA program using DE for powering high performance ion engine missions, pose similar concerns. It is critical to quantify the probability and rates of interception of the DE beam with the approximately 2000 active Earth orbiting spacecraft. We have modeled the interception of the beam with satellites by using their orbital parameters and computing the likelihood of interception for many of the scenarios of the proposed systems we are working on. We are able to simulate both the absolute interception as well as the distance and angle from the beam to the spacecraft, and have modeled a number of scenarios to obtain general probabilities. We have established that the probability of beam interception of any active satellite, including its orbital position uncertainty, during any of the proposed mission scenarios is low (≈10−4\approx10^{-4}). The outcome of this work gives us the ability to predict when to energize the beam without intercept, as well as the capability to turn off the DE as needed for extended mission scenarios. As additional satellites are launched, our work can be readily extended to accommodate them. Our work can also be used to predict interception of astronomical adaptive optics guide-star lasers as well as more general laser use.Comment: 47 pages, 8 figure

    Modeling, Stability Analysis, and Testing of a Hybrid Docking Simulator

    Full text link
    A hybrid docking simulator is a hardware-in-the-loop (HIL) simulator that includes a hardware element within a numerical simulation loop. One of the goals of performing a HIL simulation at the European Proximity Operation Simulator (EPOS) is the verification and validation of the docking phase in an on-orbit servicing mission.....Comment: 30 papge

    Simulation of Single Gimbal Control Moment Gyroscopes (SGCMG) Cluster for Microsatellite Maritime Surveillance Mission

    Get PDF
    The potential for agile missions for small satellites exists through development of single gimbal control moment gyroscopes (SGCMG). An SGCMG cluster comes with additional complexity and volume requirements, but efforts in their development have reduced their overall size while providing higher torque over similarly sized reaction wheels. In this paper, we present a feasibility study of a small satellite using a small volume pyramid SGCMG cluster for coastline monitoring through Simulink. Two realistic torque profiles for sweeping capture of complex coastlines within one minute were generated using STK, requiring maximum torques of 0.190 and 0.218 Nm and rapid slew rate. The torques are beyond the capabilities of a similarly sized reaction wheel, which can only output maximum torques of 0.020 Nm. The torque profiles were replicated using simulated SGCMG cluster using modelled SGCMG scaled for small satellites. Results show that the SGCMG pyramid cluster meets the required torque profiles with less than 0.3 degrees of pointing error throughout the maneuver. A novel SGCMG hardware is currently under development and preliminary analysis indicates sufficient torque for agile missions such as coastal monitoring presented in this paper. The viability of SGCMG cluster provide promising alternative for ACS design of small satellites where agility have been limited by existing attitude actuators
    • …
    corecore