960 research outputs found

    Measuring the Influence of Observations in HMMs through the Kullback-Leibler Distance

    Full text link
    We measure the influence of individual observations on the sequence of the hidden states of the Hidden Markov Model (HMM) by means of the Kullback-Leibler distance (KLD). Namely, we consider the KLD between the conditional distribution of the hidden states' chain given the complete sequence of observations and the conditional distribution of the hidden chain given all the observations but the one under consideration. We introduce a linear complexity algorithm for computing the influence of all the observations. As an illustration, we investigate the application of our algorithm to the problem of detecting outliers in HMM data series

    Data-based fault detection in chemical processes: Managing records with operator intervention and uncertain labels

    Get PDF
    Developing data-driven fault detection systems for chemical plants requires managing uncertain data labels and dynamic attributes due to operator-process interactions. Mislabeled data is a known problem in computer science that has received scarce attention from the process systems community. This work introduces and examines the effects of operator actions in records and labels, and the consequences in the development of detection models. Using a state space model, this work proposes an iterative relabeling scheme for retraining classifiers that continuously refines dynamic attributes and labels. Three case studies are presented: a reactor as a motivating example, flooding in a simulated de-Butanizer column, as a complex case, and foaming in an absorber as an industrial challenge. For the first case, detection accuracy is shown to increase by 14% while operating costs are reduced by 20%. Moreover, regarding the de-Butanizer column, the performance of the proposed strategy is shown to be 10% higher than the filtering strategy. Promising results are finally reported in regard of efficient strategies to deal with the presented problemPeer ReviewedPostprint (author's final draft

    t-Exponential Memory Networks for Question-Answering Machines

    Full text link
    Recent advances in deep learning have brought to the fore models that can make multiple computational steps in the service of completing a task; these are capable of describ- ing long-term dependencies in sequential data. Novel recurrent attention models over possibly large external memory modules constitute the core mechanisms that enable these capabilities. Our work addresses learning subtler and more complex underlying temporal dynamics in language modeling tasks that deal with sparse sequential data. To this end, we improve upon these recent advances, by adopting concepts from the field of Bayesian statistics, namely variational inference. Our proposed approach consists in treating the network parameters as latent variables with a prior distribution imposed over them. Our statistical assumptions go beyond the standard practice of postulating Gaussian priors. Indeed, to allow for handling outliers, which are prevalent in long observed sequences of multivariate data, multivariate t-exponential distributions are imposed. On this basis, we proceed to infer corresponding posteriors; these can be used for inference and prediction at test time, in a way that accounts for the uncertainty in the available sparse training data. Specifically, to allow for our approach to best exploit the merits of the t-exponential family, our method considers a new t-divergence measure, which generalizes the concept of the Kullback-Leibler divergence. We perform an extensive experimental evaluation of our approach, using challenging language modeling benchmarks, and illustrate its superiority over existing state-of-the-art techniques

    HMM-MIO: An enhanced hidden Markov model for action recognition

    Full text link
    Generative models can be flexibly employed in a variety of tasks such as classification, detection and segmentation thanks to their explicit modelling of likelihood functions. However, likelihood functions are hard to model accurately in many real cases. In this paper, we present an enhanced hidden Markov model capable of dealing with the noisy, high-dimensional and sparse measurements typical of action feature sets. The modified model, named hidden Markov model with multiple, independent observations (HMM-MIO), joins: a) robustness to observation outliers, b) dimensionality reduction, and c) processing of sparse observations. In the paper, a set of experimental results over the Weizmann and KTH datasets shows that this model can be tuned to achieve classification accuracy comparable to that of discriminative classifiers. While discriminative approaches remain the natural choice for classification tasks, our results prove that likelihoods, too, can be modelled to a high level of accuracy. In the near future, we plan extension of HMM-MIO along the lines of infinite Markov models and its integration into a switching model for continuous human action recognition. © 2011 IEEE

    Recent Advances in Anomaly Detection Methods Applied to Aviation

    Get PDF
    International audienceAnomaly detection is an active area of research with numerous methods and applications. This survey reviews the state-of-the-art of data-driven anomaly detection techniques and their application to the aviation domain. After a brief introduction to the main traditional data-driven methods for anomaly detection, we review the recent advances in the area of neural networks, deep learning and temporal-logic based learning. In particular, we cover unsupervised techniques applicable to time series data because of their relevance to the aviation domain, where the lack of labeled data is the most usual case, and the nature of flight trajectories and sensor data is sequential, or temporal. The advantages and disadvantages of each method are presented in terms of computational efficiency and detection efficacy. The second part of the survey explores the application of anomaly detection techniques to aviation and their contributions to the improvement of the safety and performance of flight operations and aviation systems. As far as we know, some of the presented methods have not yet found an application in the aviation domain. We review applications ranging from the identification of significant operational events in air traffic operations to the prediction of potential aviation system failures for predictive maintenance

    Generative Models Based on the Bounded Asymmetric Student’s t-Distribution

    Get PDF
    Gaussian mixture models (GMMs) are a very useful and widely popular approach for clustering, but they have several limitations, such as low outliers tolerance and assumption of data normality. Another problem in relation to finite mixture models in general is the inference of an optimal number of mixture components. An excellent approach to solve this problem is model selection, which is the process of choosing the optimal number of mixture components that ensures the best clustering performance. In this thesis, we attempt to tackle both aforementioned issues: we propose using minimum message length (MML) as a model selection criterion for multivariate bounded asymmetric Student’s t-mixture model (BASMM). In fact, BASMM is chosen as an alternative to improve the GMM’s limitations, as it provides a better fit for the real-world data irregularities. We formulate the definition of MML and the BASMM, and we test their performance through multiple experiments with different problem settings. Hidden Markov models (HMMs) are popular methods for continuous sequential data modeling and classification tasks. In such applications, the observation emission densities of the HMM hidden states are typically modeled by elliptically contoured distributions, namely Gaussians or Student’s t-distributions. In this context, this thesis proposes BAMMHMM: a novel HMM with Bounded Asymmetric Student’s t-Mixture Model (BASMM) emissions. This HMM is destined to sufficiently fit skewed and outlier-heavy observations, which are typical in many fields, such as financial or signal processing-related datasets. We demonstrate the improved robustness of our model by presenting the results of different real-world applications

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Probabilistic Motion Estimation Based on Temporal Coherence

    Full text link
    We develop a theory for the temporal integration of visual motion motivated by psychophysical experiments. The theory proposes that input data are temporally grouped and used to predict and estimate the motion flows in the image sequence. This temporal grouping can be considered a generalization of the data association techniques used by engineers to study motion sequences. Our temporal-grouping theory is expressed in terms of the Bayesian generalization of standard Kalman filtering. To implement the theory we derive a parallel network which shares some properties of cortical networks. Computer simulations of this network demonstrate that our theory qualitatively accounts for psychophysical experiments on motion occlusion and motion outliers.Comment: 40 pages, 7 figure
    corecore