29 research outputs found

    A deep-neural-network-based hybrid method for semi-supervised classification of polarimetric SAR data

    Get PDF
    This paper proposes a deep-neural-network-based semi-supervised method for polarimetric synthetic aperture radar (PolSAR) data classification. The proposed method focuses on achieving a well-trained deep neural network (DNN) when the amount of the labeled samples is limited. In the proposed method, the probability vectors, where each entry indicates the probability of a sample associated with a category, are first evaluated for the unlabeled samples, leading to an augmented training set. With this augmented training set, the parameters in the DNN are learned by solving the optimization problem, where the log-likelihood cost function and the class probability vectors are used. To alleviate the “salt-and-pepper” appearance in the classification results of PolSAR images, the spatial interdependencies are incorporated by introducing a Markov random field (MRF) prior in the prediction step. The experimental results on two realistic PolSAR images demonstrate that the proposed method effectively incorporates the spatial interdependencies and achieves the good classification accuracy with a limited number of labeled samples

    DNN-based PolSAR image classification on noisy labels

    Get PDF
    Deep neural networks (DNNs) appear to be a solution for the classification of polarimetric synthetic aperture radar (PolSAR) data in that they outperform classical supervised classifiers under the condition of sufficient training samples. The design of a classifier is challenging because DNNs can easily overfit due to limited remote sensing training samples and unavoidable noisy labels. In this article, a softmax loss strategy with antinoise capability, namely, the probability-aware sample grading strategy (PASGS), is developed to overcome this limitation. Combined with the proposed softmax loss strategy, two classical DNN-based classifiers are implemented to perform PolSAR image classification to demonstrate its effectiveness. In this framework, the difference distribution implicitly reflects the probability that a training sample is clean, and clean labels can be distinguished from noisy labels according to the method of probability statistics. Then, this probability is employed to reweight the corresponding loss of each training sample during the training process to locate the noisy data and to prevent participation in the loss calculation of the neural network. As the number of training iterations increases, the condition of the probability statistics of the noisy labels will be constantly adjusted without supervision, and the clean labels will eventually be identified to train the neural network. Experiments on three PolSAR datasets with two DNN-based methods also demonstrate that the proposed method is superior to state-of-the-art methods.This work was supported in part by the National Natural Science Foundation of China under Grant 61871413 and Grant 61801015, in part by the Fundamental Research Funds for the Central Universities under Grant XK2020-03, in part by China Scholarship Council under Grant 2020006880033, and in part by Grant PID2020-114623RB-C32 funded by MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version

    Region-Based Classification of PolSAR Data Using Radial Basis Kernel Functions With Stochastic Distances

    Full text link
    Region-based classification of PolSAR data can be effectively performed by seeking for the assignment that minimizes a distance between prototypes and segments. Silva et al (2013) used stochastic distances between complex multivariate Wishart models which, differently from other measures, are computationally tractable. In this work we assess the robustness of such approach with respect to errors in the training stage, and propose an extension that alleviates such problems. We introduce robustness in the process by incorporating a combination of radial basis kernel functions and stochastic distances with Support Vector Machines (SVM). We consider several stochastic distances between Wishart: Bhatacharyya, Kullback-Leibler, Chi-Square, R\'{e}nyi, and Hellinger. We perform two case studies with PolSAR images, both simulated and from actual sensors, and different classification scenarios to compare the performance of Minimum Distance and SVM classification frameworks. With this, we model the situation of imperfect training samples. We show that SVM with the proposed kernel functions achieves better performance with respect to Minimum Distance, at the expense of more computational resources and the need of parameter tuning. Code and data are provided for reproducibility.Comment: Accepted for publication in the International Journal of Digital Eart

    Fuzzy superpixels for polarimetric SAR images classification

    Get PDF
    Superpixels technique has drawn much attention in computer vision applications. Each superpixels algorithm has its own advantages. Selecting a more appropriate superpixels algorithm for a specific application can improve the performance of the application. In the last few years, superpixels are widely used in polarimetric synthetic aperture radar (PolSAR) image classification. However, no superpixel algorithm is especially designed for image classification. It is believed that both mixed superpixels and pure superpixels exist in an image.Nevertheless, mixed superpixels have negative effects on classification accuracy. Thus, it is necessary to generate superpixels containing as few mixed superpixels as possible for image classification. In this paper, first, a novel superpixels concept, named fuzzy superpixels, is proposed for reducing the generation of mixed superpixels.In fuzzy superpixels ,not al lpixels are assigned to a corresponding superpixel. We would rather ignore the pixels than assigning them to improper superpixels. Second,a new algorithm, named FuzzyS(FS),is proposed to generate fuzzy superpixels for PolSAR image classification. Three PolSAR images are used to verify the effect of the proposed FS algorithm. Experimental results demonstrate the superiority of the proposed FS algorithm over several state-of-the-art superpixels algorithms

    Advanced techniques for classification of polarimetric synthetic aperture radar data

    Get PDF
    With various remote sensing technologies to aid Earth Observation, radar-based imaging is one of them gaining major interests due to advances in its imaging techniques in form of syn-thetic aperture radar (SAR) and polarimetry. The majority of radar applications focus on mon-itoring, detecting, and classifying local or global areas of interests to support humans within their efforts of decision-making, analysis, and interpretation of Earth’s environment. This thesis focuses on improving the classification performance and process particularly concerning the application of land use and land cover over polarimetric SAR (PolSAR) data. To achieve this, three contributions are studied related to superior feature description and ad-vanced machine-learning techniques including classifiers, principles, and data exploitation. First, this thesis investigates the application of color features within PolSAR image classi-fication to provide additional discrimination on top of the conventional scattering information and texture features. The color features are extracted over the visual presentation of fully and partially polarimetric SAR data by generation of pseudo color images. Within the experiments, the obtained results demonstrated that with the addition of the considered color features, the achieved classification performances outperformed results with common PolSAR features alone as well as achieved higher classification accuracies compared to the traditional combination of PolSAR and texture features. Second, to address the large-scale learning challenge in PolSAR image classification with the utmost efficiency, this thesis introduces the application of an adaptive and data-driven supervised classification topology called Collective Network of Binary Classifiers, CNBC. This topology incorporates active learning to support human users with the analysis and interpretation of PolSAR data focusing on collections of images, where changes or updates to the existing classifier might be required frequently due to surface, terrain, and object changes as well as certain variations in capturing time and position. Evaluations demonstrated the capabilities of CNBC over an extensive set of experimental results regarding the adaptation and data-driven classification of single as well as collections of PolSAR images. The experimental results verified that the evolutionary classification topology, CNBC, did provide an efficient solution for the problems of scalability and dynamic adaptability allowing both feature space dimensions and the number of terrain classes in PolSAR image collections to vary dynamically. Third, most PolSAR classification problems are undertaken by supervised machine learn-ing, which require manually labeled ground truth data available. To reduce the manual labeling efforts, supervised and unsupervised learning approaches are combined into semi-supervised learning to utilize the huge amount of unlabeled data. The application of semi-supervised learning in this thesis is motivated by ill-posed classification tasks related to the small training size problem. Therefore, this thesis investigates how much ground truth is actually necessary for certain classification problems to achieve satisfactory results in a supervised and semi-supervised learning scenario. To address this, two semi-supervised approaches are proposed by unsupervised extension of the training data and ensemble-based self-training. The evaluations showed that significant speed-ups and improvements in classification performance are achieved. In particular, for a remote sensing application such as PolSAR image classification, it is advantageous to exploit the location-based information from the labeled training data. Each of the developed techniques provides its stand-alone contribution from different viewpoints to improve land use and land cover classification. The introduction of a new fea-ture for better discrimination is independent of the underlying classification algorithms used. The application of the CNBC topology is applicable to various classification problems no matter how the underlying data have been acquired, for example in case of remote sensing data. Moreover, the semi-supervised learning approach tackles the challenge of utilizing the unlabeled data. By combining these techniques for superior feature description and advanced machine-learning techniques exploiting classifier topologies and data, further contributions to polarimetric SAR image classification are made. According to the performance evaluations conducted including visual and numerical assessments, the proposed and investigated tech-niques showed valuable improvements and are able to aid the analysis and interpretation of PolSAR image data. Due to the generic nature of the developed techniques, their applications to other remote sensing data will require only minor adjustments

    Classification of Compact Polarimetric Synthetic Aperture Radar Images

    Get PDF
    The RADARSAT Constellation Mission (RCM) was launched in June 2019. RCM, in addition to dual-polarization (DP) and fully quad-polarimetric (QP) imaging modes, provides compact polarimetric (CP) mode data. A CP synthetic aperture radar (SAR) is a coherent DP system in which a single circular polarization is transmitted followed by the reception in two orthogonal linear polarizations. A CP SAR fully characterizes the backscattered field using the Stokes parameters, or equivalently, the complex coherence matrix. This is the main advantage of a CP SAR over the traditional (non-coherent) DP SAR. Therefore, designing scene segmentation and classification methods using CP complex coherence matrix data is advocated in this thesis. Scene classification of remotely captured images is an important task in monitoring the Earth's surface. The high-resolution RCM CP SAR data can be used for land cover classification as well as sea-ice mapping. Mapping sea ice formed in ocean bodies is important for ship navigation and climate change modeling. The Canadian Ice Service (CIS) has expert ice analysts who manually generate sea-ice maps of Arctic areas on a daily basis. An automated sea-ice mapping process that can provide detailed yet reliable maps of ice types and water is desirable for CIS. In addition to linear DP SAR data in ScanSAR mode (500km), RCM wide-swath CP data (350km) can also be used in operational sea-ice mapping of the vast expanses in the Arctic areas. The smaller swath coverage of QP SAR data (50km) is the reason why the use of QP SAR data is limited for sea-ice mapping. This thesis involves the design and development of CP classification methods that consist of two steps: an unsupervised segmentation of CP data to identify homogeneous regions (superpixels) and a labeling step where a ground truth label is assigned to each super-pixel. An unsupervised segmentation algorithm is developed based on the existing Iterative Region Growing using Semantics (IRGS) for CP data and is called CP-IRGS. The constituents of feature model and spatial context model energy terms in CP-IRGS are developed based on the statistical properties of CP complex coherence matrix data. The superpixels generated by CP-IRGS are then used in a graph-based labeling method that incorporates the global spatial correlation among super-pixels in CP data. The classifications of sea-ice and land cover types using test scenes indicate that (a) CP scenes provide improved sea-ice classification than the linear DP scenes, (b) CP-IRGS performs more accurate segmentation than that using only CP channel intensity images, and (c) using global spatial information (provided by a graph-based labeling approach) provides an improvement in classification accuracy values over methods that do not exploit global spatial correlation

    X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for Classification of Remote Sensing Data

    Get PDF
    This paper addresses the problem of semi-supervised transfer learning with limited cross-modality data in remote sensing. A large amount of multi-modal earth observation images, such as multispectral imagery (MSI) or synthetic aperture radar (SAR) data, are openly available on a global scale, enabling parsing global urban scenes through remote sensing imagery. However, their ability in identifying materials (pixel-wise classification) remains limited, due to the noisy collection environment and poor discriminative information as well as limited number of well-annotated training images. To this end, we propose a novel cross-modal deep-learning framework, called X-ModalNet, with three well-designed modules: self-adversarial module, interactive learning module, and label propagation module, by learning to transfer more discriminative information from a small-scale hyperspectral image (HSI) into the classification task using a large-scale MSI or SAR data. Significantly, X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network, yielding semi-supervised cross-modality learning. We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods

    A robust dynamic classifier selection approach for hyperspectral images with imprecise label information

    Get PDF
    Supervised hyperspectral image (HSI) classification relies on accurate label information. However, it is not always possible to collect perfectly accurate labels for training samples. This motivates the development of classifiers that are sufficiently robust to some reasonable amounts of errors in data labels. Despite the growing importance of this aspect, it has not been sufficiently studied in the literature yet. In this paper, we analyze the effect of erroneous sample labels on probability distributions of the principal components of HSIs, and provide in this way a statistical analysis of the resulting uncertainty in classifiers. Building on the theory of imprecise probabilities, we develop a novel robust dynamic classifier selection (R-DCS) model for data classification with erroneous labels. Particularly, spectral and spatial features are extracted from HSIs to construct two individual classifiers for the dynamic selection, respectively. The proposed R-DCS model is based on the robustness of the classifiers’ predictions: the extent to which a classifier can be altered without changing its prediction. We provide three possible selection strategies for the proposed model with different computational complexities and apply them on three benchmark data sets. Experimental results demonstrate that the proposed model outperforms the individual classifiers it selects from and is more robust to errors in labels compared to widely adopted approaches
    corecore