11,081 research outputs found

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    How Digital Nudges Affect Consideration Set Size and Perceived Cognitive Effort in Idea Convergence of Open Innovation Contests

    Get PDF
    Open innovation initiatives are useful to acquire many ideas, but often face problems when it comes to selecting the best ideas. Idea convergence has been suggested as a first step in idea selection to filter those ideas that are worthy of further consideration. Digital nudges – digital interventions that aim at altering human behavior in a predictable way - could support convergence. However, their effects are largely unknown. This study explores how two digital nudges, selection strategy (inclusion/exclusion) and idea subset similarity (similar/random), affect the convergence outcomes consideration set size and perceived cognitive effort. We conducted a laboratory experiment with 88 students and found that guiding individuals towards an inclusion strategy results in smaller consideration sets and higher perceived cognitive effort. Moreover, presenting individuals with subsets of similar ideas resulted in smaller consideration sets. These insights are relevant for the design and use of digital nudges for convergence in open innovation environments

    Analogical Reasoning Techniques in Intelligent Counterterrorism Systems

    Get PDF
    The paper develops a set of ideas and techniques supporting analogical reasoning throughout the life-cycle of terrorist acts. Implementation of these ideas and techniques can enhance the intellectual level of computer-based systems for a wide range of personnel dealing with various aspects of the problem of terrorism and its effects. The method combines techniques of structure-sensitive distributed representations in the framework of Associative-Projective Neural Networks, and knowledge obtained through the progress in analogical reasoning, in particular the Structure Mapping Theory. The impact of these analogical reasoning tools on the efforts to minimize the effects of terrorist acts on civilian population is expected by facilitating knowledge acquisition and formation of terrorism-related knowledge bases, as well as supporting the processes of analysis, decision making, and reasoning with those knowledge bases for users at various levels of expertise before, during, and after terrorist acts

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Context aware ontology‐based hybrid intelligent framework for vehicle driver categorization

    Get PDF
    In public vehicles, one of the major concerns is driver's level of expertise for its direct proportionality to safety of passengers. Hence, before a driver is subjected to certain type of vehicle, he should be thoroughly evaluated and categorized with respect to certain parameters instead of only one‐time metric of having driving license. These aspects may be driver's expertise, vigilance, aptitude, experience years, cognition, driving style, formal education, terrain, region, minor violations, major accidents, and age group. The purpose of this categorization is to ascertain suitability of a driver for certain vehicle type(s) to ensure passengers' safety. Currently, no driver categorization technique fully comprehends the implicit as well as explicit characteristics of drivers dynamically. In this paper, machine learning–based dynamic and adaptive technique named D‐CHAITs (driver categorization through hybrid of artificial intelligence techniques) is proposed for driver categorization with an objective focus on driver's attributes modeled in DriverOntology. A supervised mode of learning has been employed on a labeled dataset, having diverse profiles of drivers with attributes pertinent to drivers' perspectives of demographics, behaviors, expertise, and inclinations. A comparative analysis of D‐CHAIT with three other machine learning techniques (fuzzy logic, case‐based reasoning, and artificial neural networks) is also presented. The efficacy of all techniques was empirically measured while categorizing the drivers based on their profiles through metrics of accuracy, precision, recall, F‐measure performance, and associated costs. These empirical quantifications assert D‐CHAIT as a better technique than contemporary ones. The novelty of proposed technique is signified through preprocessing of feature attributes, quality of data, training of machine learning model on more relevant data, and adaptivity This is the peer reviewed version of the following article: Context aware ontology‐based hybrid intelligent framework for vehicle driver categorization, which has been published in final form at https://doi.org/10.1002/ett.3729. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

    Overview: Computer vision and machine learning for microstructural characterization and analysis

    Full text link
    The characterization and analysis of microstructure is the foundation of microstructural science, connecting the materials structure to its composition, process history, and properties. Microstructural quantification traditionally involves a human deciding a priori what to measure and then devising a purpose-built method for doing so. However, recent advances in data science, including computer vision (CV) and machine learning (ML) offer new approaches to extracting information from microstructural images. This overview surveys CV approaches to numerically encode the visual information contained in a microstructural image, which then provides input to supervised or unsupervised ML algorithms that find associations and trends in the high-dimensional image representation. CV/ML systems for microstructural characterization and analysis span the taxonomy of image analysis tasks, including image classification, semantic segmentation, object detection, and instance segmentation. These tools enable new approaches to microstructural analysis, including the development of new, rich visual metrics and the discovery of processing-microstructure-property relationships.Comment: submitted to Materials and Metallurgical Transactions
    corecore