130 research outputs found

    Recent Advances in Joint Wireless Energy and Information Transfer

    Full text link
    In this paper, we provide an overview of the recent advances in microwave-enabled wireless energy transfer (WET) technologies and their applications in wireless communications. Specifically, we divide our discussions into three parts. First, we introduce the state-of-the-art WET technologies and the signal processing techniques to maximize the energy transfer efficiency. Then, we discuss an interesting paradigm named simultaneous wireless information and power transfer (SWIPT), where energy and information are jointly transmitted using the same radio waveform. At last, we review the recent progress in wireless powered communication networks (WPCN), where wireless devices communicate using the power harvested by means of WET. Extensions and future directions are also discussed in each of these areas.Comment: Conference submission accepted by ITW 201

    Transmitter Optimization Techniques for Physical Layer Security

    Get PDF
    Information security is one of the most critical issues in wireless networks as the signals transmitted through wireless medium are more vulnerable for interception. Although the existing conventional security techniques are proven to be safe, the broadcast nature of wireless communications introduces different challenges in terms of key exchange and distributions. As a result, information theoretic physical layer security has been proposed to complement the conventional security techniques for enhancing security in wireless transmissions. On the other hand, the rapid growth of data rates introduces different challenges on power limited mobile devices in terms of energy requirements. Recently, research work on wireless power transfer claimed that it has been considered as a potential technique to extend the battery lifetime of wireless networks. However, the algorithms developed based on the conventional optimization approaches often require iterative techniques, which poses challenges for real-time processing. To meet the demanding requirements of future ultra-low latency and reliable networks, neural network (NN) based approach can be employed to determine the resource allocations in wireless communications. This thesis developed different transmission strategies for secure transmission in wireless communications. Firstly, transmitter designs are focused in a multiple-input single-output simultaneous wireless information and power transfer system with unknown eavesdroppers. To improve the performance of physical layer security and the harvested energy, artificial noise is incorporated into the network to mask the secret information between the legitimate terminals. Then, different secrecy energy efficiency designs are considered for a MISO underlay cognitive radio network, in the presence of an energy harvesting receiver. In particular, these designs are developed with different channel state information assumptions at the transmitter. Finally, two different power allocation designs are investigated for a cognitive radio network to maximize the secrecy rate of the secondary receiver: conventional convex optimization framework and NN based algorithm

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure

    Regularized Channel Inversion for Simultaneous Confidential Broadcasting and Power Transfer: A Large System Analysis

    Get PDF
    We propose for the first time new transmission schemes based on linear precoding to enable simultaneous confidential broadcasting and power transfer (SCBPT) in a multiuser multi-input single-output (MISO) network, where a BS with N antennas simultaneously transmits power and confidential messages to K single-antenna users. We first design two transmission schemes based on the rules of regularized channel inversion (RCI) for both power splitting (PS) and time switching (TS) receiver architectures, namely, RCI-PS and RCI-TS schemes. For each scheme, we derive channel-independent expressions to approximate the secrecy sum rate and the harvested power in the large-system regime where K, N → ∞ with a fixed ratio β = K/N. Based on the large-system results, we jointly optimize the regularization parameter of the RCI and the PS ratio or the TS ratio such that the secrecy sum rate is maximized subject to an energy-harvesting constraint. We then present the tradeoff between the secrecy sum rate and the harvested power achieved by each scheme, and find that neither scheme always outperforms the other one. Motivated by this fact, we design an RCI-hybrid scheme based on the RCI and a newly proposed hybrid receiver architecture. The hybrid receiver architecture takes advantages of both the PS and TS receiver architectures. We show that the RCI-hybrid scheme outperforms both the RCI-PS and RCI-TS schemes.ARC Discovery Projects Grant DP15010390

    Secrecy Energy Efficiency in Wireless Powered Heterogeneous Networks: A Distributed ADMM Approach

    Get PDF
    OAPA This paper investigates the physical layer security in heterogeneous networks (HetNets) supported by simultaneous wireless information and power transfer (SWIPT). We first consider a two-tier HetNet composed of a macrocell and several femtocells, where the macrocell base station (BS) serves multiple users in the presence of a malicious eavesdropper, while each femtocell BS serves a couple of Internet-of-things (IoT) users. With regard to the energy constraint of IoT users, SWIPT is performed at the femtocell BSs, and IoT users accomplish the reception of information and energy in a time-switching (TS) manner, where information secrecy is to be protected. To enhance the secrecy performance, we inject artificial noise (AN) into the transmit beam at both macrocell and femtocell BSs, and for the sake of achieving green communications, we formulate the problem of maximizing secrecy energy efficiency while considering the fairness in a cross-tier multi-cell coordinated beamforming (MCBF) design. To handle this resulting nonconvex max-min fractional program problem, we propose an iterative algorithm by applying successive convex approximation method. Then, we further develop a decentralized solution based on alternative direction multiplier method (ADMM), which reduces the overhead of information exchange among coordinated BSs and achieves good approximation performance. Finally, simulation results demonstrate the performance of the proposed AN-aided cross-tier MCBF design and verify the validity of distributed ADMM-based approach
    • …
    corecore