2,025 research outputs found

    Emission-aware Energy Storage Scheduling for a Greener Grid

    Full text link
    Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions -- equivalent to a drop of 23.3% in our electric grid emissions.Comment: 11 pages, 7 figure, This paper will appear in the Proceedings of the ACM International Conference on Future Energy Systems (e-Energy 20) June 2020, Australi

    Frequency response from aggregated V2G chargers with uncertain EV connections

    Get PDF
    Fast frequency response (FR) is highly effective at securing frequency dynamics after a generator outage in low inertia systems. Electric vehicles (EVs) equipped with vehicle to grid (V2G) chargers could offer an abundant source of FR in future. However, the uncertainty associated with V2G aggregation, driven by the uncertain number of connected EVs at the time of an outage, has not been fully understood and prevents its participation in the existing service provision framework. To tackle this limitation, this paper, for the first time, incorporates such uncertainty into system frequency dynamics, from which probabilistic nadir and steady state frequency requirements are enforced via a derived moment-based distributionally-robust chance constraint. Field data from over 25,000 chargers is analysed to provide realistic parameters and connection forecasts to examine the value of FR from V2G chargers in annual operation of the GB 2030 system. The case study demonstrates that uncertainty of EV connections can be effectively managed through the proposed scheduling framework, which results in annual savings of Misplaced &6,300 or 37.4 tCO2 per charger. The sensitivity of this value to renewable capacity and FR delays is explored, with V2G capacity shown to be a third as valuable as the same grid battery capacity

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Secure and cost-effective operation of low carbon power systems under multiple uncertainties

    Get PDF
    Power system decarbonisation is driving the rapid deployment of renewable energy sources (RES) like wind and solar at the transmission and distribution level. Their differences from the synchronous thermal plants they are displacing make secure and efficient grid operation challenging. Frequency stability is of particular concern due to the current lack of provision of frequency ancillary services like inertia or response from RES generators. Furthermore, the weather dependency of RES generation coupled with the proliferation of distributed energy resources (DER) like small-scale solar or electric vehicles permeates future low-carbon systems with uncertainty under which legacy scheduling methods are inadequate. Overly cautious approaches to this uncertainty can lead to inefficient and expensive systems, whilst naive methods jeopardise system security. This thesis significantly advances the frequency-constrained scheduling literature by developing frameworks that explicitly account for multiple new uncertainties. This is in addition to RES forecast uncertainty which is the exclusive focus of most previous works. The frameworks take the form of convex constraints that are useful in many market and scheduling problems. The constraints equip system operators with tools to explicitly guarantee their preferred level of system security whilst unlocking substantial value from emerging and abundant DERs. A major contribution is to address the exclusion of DERs from the provision of ancillary services due to their intrinsic uncertainty from aggregation. This is done by incorporating the uncertainty into the system frequency dynamics, from which deterministic convex constraints are derived. In addition to managing uncertainty to facilitate emerging DERs to provide legacy frequency services, a novel frequency containment service is designed. The framework allows a small amount of load shedding to assist with frequency containment during high RES low inertia periods. The expected cost of this service is probabilistic as it is proportional to the probability of a contingency occurring. The framework optimally balances the potentially higher expected costs of an outage against the operational cost benefits of lower ancillary service requirements day-to-day. The developed frameworks are applied extensively to several case studies. These validate their security and demonstrate their significant economic and emission-saving benefits.Open Acces

    Optimization methods for developing electric vehicle charging strategies

    Get PDF
    Electric vehicles (EVs) are considered to be a crucial and proactive player in the future for transport electrification, energy transition, and emission reduction, as promoted by policy-makers, relevant industries, and the academia. EV charging would account for a non-negligible share in the future electricity demand. The integration of EV brings both challenges and opportunities to the electricity system, mainly from their charging profiles. When EV charging behaviors are uncontrolled, their potentially high charging rate and synchronous charging patterns may result in the bottleneck of the grid capacity and the shortage of generation ramping capacity. However, the promising load shifting potential of EVs can alleviate these problems and even bring additional flexibilities to the demand side for further applications, such as peak shaving and the integration of renewable energy. To grasp these opportunities, novel controlled charging strategies should be developed to help integrate electric vehicles into energy systems. However, corresponding methods in current literature often have customized assumptions or settings so that they might not be practically or widely applied. Furthermore, the attention of literature is more paid to explaining the results of the methods or making consequent policy recommendations, but not sufficiently paid to demonstrating the methods themselves. The lack of the latter might undermine the credibility of the work and hinder readers’ understanding. Therefore, this thesis serves as a methodological framework in response to the fundamental and universal challenges in developing charging strategies for integrating EV into energy systems. The discussions aim to raise readers’ awareness of the essential but often unnoticed concerns in model development and hopefully would enlighten future researchers into this topic. Specifically, this cumulative thesis comprises four papers and analyzes the research topic from two perspectives. With Paper A and Paper B, the micro perspective of the thesis is more applied and focuses on the successful implementation of charging scheduling solutions for each EV individually. Paper A proposes a two-stage scenario-based stochastic linear programming model to schedule EV charging behaviors and considers the uncertainties from future EVs. The model is calculated in a rolling window fashion with updated parameters. Scenario generation for future EVs is simulated by inhomogeneous Markov chains, and scenario reduction is achieved by a fast forward selection method to reduce the computational burden. The objective function is formulated as variance minimization so that the model can be flexibly implemented for various applications. Paper B applies the model proposed in Paper A to investigate how the generation of a wind turbine could be correlated with the EV controlled charging demand. An empirical controlled charging strategy is designed for comparison where EVs would charge as much as possible when wind generation is sufficient or would postpone charging otherwise. Although these two controlled charging strategies perform similarly in terms of wind energy utilization, the solutions from the proposed model could additionally alleviate the volatility of wind energy generation by matching the EV charging curve to the electricity generation profile. With Paper C and Paper D, the macro perspective of the thesis is more explorative and investigates how EVs as a whole would contribute to energy transition or emission reduction. Paper C investigates the greenhouse gas emissions of EVs under different charging strategies in Europe in 2050. Methodologically, the paper proposes an EV module that enables different EV controlled charging strategies to be endogenously determined by energy system models. The paper concludes that EVs would contribute to a 36% emission reduction on the European level even under an uncontrolled charging strategy. Unidirectional and bidirectional controlled charging strategies could further reduce emissions by 4% and 11%, respectively, compared with the original level. As a follow-up study of Paper C, Paper D develops, demonstrates, improves, and compares three different types of EV aggregation methods for integrating an EV module into energy system models. The analysis and demonstration of these methods are achieved by having a simplified energy system model as a testbed and the results from the individual EV modeling method as the benchmark. As different EV aggregation methods share the same data set as for the individual EV modeling method, the disturbance from parameters is minimized, and the influence from mathematical formulations is highlighted. These EV aggregation methods are compared from multiple aspects

    Optimal scheduling of smart microgrids considering electric vehicle battery swapping stations

    Get PDF
    Smart microgrids belong to a set of networks that operate independently. These networks have technologies such as electric vehicle battery swapping stations that aim to economic welfare with own resources of smart microgrids. These resources should support other services, for example, the supply of energy at peak hours. This study addresses the formulation of a decision matrix based on operating conditions of electric vehicles and examines economically viable alternatives for a battery swapping station. The decision matrix is implemented to manage the swapping, charging, and discharging of electric vehicles. Furthermore, this study integrates a smart microgrid model to assess the operational strategies of the aggregator, which can act like a prosumer by managing both electric vehicle battery swapping stations and energy storage systems. The smart microgrid model proposed includes elements used for demand response and generators with renewable energies. This model investigates the effect of the wholesale, local and electric-vehicle markets. Additionally, the model includes uncertainty issues related to the planning for the infrastructure of the electric vehicle battery swapping station, variability of electricity prices, weather conditions, and load forecasting. This article also analyzes how both the user and the providers maximize their economic benefits with the hybrid optimization algorithm called variable neighborhood search - differential evolutionary particle swarm optimization. The strategy to organize the infrastructure of these charging stations reaches a reduction of 72% in the overall cost. This reduction percentage is obtained calculating the random solution with respect to the suboptimal solution

    Hybrid stochastic/robust flexible and reliable scheduling of secure networked microgrids with electric springs and electric vehicles

    Get PDF
    Electric spring (ES) as a novel concept in power electronics has been developed for the purpose of dealing with demand-side management. In this paper, to conquer the challenges imposed by intermittent nature of renewable energy sources (RESs) and other uncertainties for constructing a secure modern microgrid (MG), the hybrid distributed operation of ESs and electric vehicles (EVs) parking lot is suggested. The proposed approach is implemented in the context of a hybrid stochastic/robust optimization (HSRO) problem, where the stochastic programming based on unscented transformation (UT) method models the uncertainties associated with load, energy price, RESs, and availability of MG equipment. Also, the bounded uncertainty-based robust optimization (BURO) is employed to model the uncertain parameters of EVs parking lot to achieve the robust potentials of EVs in improving MG indices. In the subsequent stage, the proposed non-linear problem model is converted to linear approximated counterpart to obtain an optimal solution with low calculation time and error. Finally, the proposed power management strategy is analyzed on 32-bus test MG to investigate the hybrid cooperation of ESs and EVs parking lot capabilities in different cases. The numerical results corroborate the efficiency and feasibility of the proposed solution in modifying MG indices.© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
    corecore