3,330 research outputs found

    Bio-inspired multi-agent systems for reconfigurable manufacturing systems

    Get PDF
    The current market’s demand for customization and responsiveness is a major challenge for producing intelligent, adaptive manufacturing systems. The Multi-Agent System (MAS) paradigm offers an alternative way to design this kind of system based on decentralized control using distributed, autonomous agents, thus replacing the traditional centralized control approach. The MAS solutions provide modularity, flexibility and robustness, thus addressing the responsiveness property, but usually do not consider true adaptation and re-configuration. Understanding how, in nature, complex things are performed in a simple and effective way allows us to mimic nature’s insights and develop powerful adaptive systems that able to evolve, thus dealing with the current challenges imposed on manufactur- ing systems. The paper provides an overview of some of the principles found in nature and biology and analyses the effectiveness of bio-inspired methods, which are used to enhance multi-agent systems to solve complex engineering problems, especially in the manufacturing field. An industrial automation case study is used to illustrate a bio-inspired method based on potential fields to dynamically route pallets

    Comparative analysis of tertiary control systems for smart grids using the Flex Street model

    Get PDF
    Various smart grid control systems have been developed with different architectures. Comparison helps developers identify their strong and weak points. A three-step analysis method is proposed to facilitate the comparison of independently developed control systems. In the first step, a microgrid model is created describing demand and supply patterns of controllable and non-controllable devices (Flex Street). In the second step, a version of Flex Street is used to design a case, with a given control objective and key performance indicators. In the last step, simulations of different control systems are performed and their results are analysed and compared. The Flex Street model describes a diverse set of households based on realistic data. Furthermore, its bottom-up modelling approach makes it a flexible tool for designing cases. Currently, three cases with peak-shaving objectives are developed based on scenarios of the Dutch residential sector, specifying various penetration rates of renewable and controllable devices. The proposed method is demonstrated by comparing IntelliGator and TRIANA, two independently developed control systems, on peak reduction, energy efficiency, savings and abated emissions. Results show that IntelliGator---a real-time approach---is proficient in reducing peak demand, while TRIANA---a planning approach---also levels intermediate demand. Both systems yield benefits (\geneuro5--54 per household per year) through reduced transport losses and network investments in the distribution network

    Trusted community : a novel multiagent organisation for open distributed systems

    Get PDF
    [no abstract

    Proposing a virtual operations network to support a business policy for the medicinal and aromatic plants sector

    Get PDF
    This research found out a more robust conceptual basis behind three missing links concerning the requirement for a virtual operations network to support a business policy for the Medicinal and Aromatic Plants (MAP) sector. Industry was pictured from secondary data gathered from a 12 experts panel. The factors to configure a collaborative network, e.g. relationships and structure, enabled the operationalisation of a previously defined social platform. Requirements for information infrastructure, co-ordination and DSS were also expressed. Moreover, the role of enterprise knowledge to the formation of collaborative ventures helped the modelling of the social-momentum of the platform. Finally, it is argued (i) for the confirmation of a significant Operations Management contribution to defining a MAP policy and, (ii) for the outlining of a collaborative network representing an advance to the usually ambiguous prescriptions of virtual operations. An interview guide to run an empirical test could be generated as further work

    Current challenges and future trends in the field of communication architectures for microgrids

    Full text link
    [EN] The concept of microgrid has emerged as a feasible answer to cope with the increasing number of distributed renewable energy sources which are being introduced into the electrical grid. The microgrid communication network should guarantee a complete and bidirectional connectivity among the microgrid resources, a high reliability and a feasible interoperability. This is in a contrast to the current electrical grid structure which is characterized by the lack of connectivity, being a centralized-unidirectional system. In this paper a review of the microgrids information and communication technologies (ICT) is shown. In addition, a guideline for the transition from the current communication systems to the future generation of microgrid communications is provided. This paper contains a systematic review of the most suitable communication network topologies, technologies and protocols for smart microgrids. It is concluded that a new generation of peer-to-peer communication systems is required towards a dynamic smart microgrid. Potential future research about communications of the next microgrid generation is also identified.This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2. This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant BES-2013-064539.Marzal-Romeu, S.; Salas-Puente, RA.; González Medina, R.; Garcerá, G.; Figueres Amorós, E. (2018). Current challenges and future trends in the field of communication architectures for microgrids. Renewable and Sustainable Energy Reviews. 82(2):3610-3622. https://doi.org/10.1016/j.rser.2017.10.101S3610362282

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    Microgrids/Nanogrids Implementation, Planning, and Operation

    Get PDF
    Today’s power system is facing the challenges of increasing global demand for electricity, high-reliability requirements, the need for clean energy and environmental protection, and planning restrictions. To move towards a green and smart electric power system, centralized generation facilities are being transformed into smaller and more distributed ones. As a result, the microgrid concept is emerging, where a microgrid can operate as a single controllable system and can be viewed as a group of distributed energy loads and resources, which can include many renewable energy sources and energy storage systems. The energy management of a large number of distributed energy resources is required for the reliable operation of the microgrid. Microgrids and nanogrids can allow for better integration of distributed energy storage capacity and renewable energy sources into the power grid, therefore increasing its efficiency and resilience to natural and technical disruptive events. Microgrid networking with optimal energy management will lead to a sort of smart grid with numerous benefits such as reduced cost and enhanced reliability and resiliency. They include small-scale renewable energy harvesters and fixed energy storage units typically installed in commercial and residential buildings. In this challenging context, the objective of this book is to address and disseminate state-of-the-art research and development results on the implementation, planning, and operation of microgrids/nanogrids, where energy management is one of the core issues

    Activity Report 2022

    Get PDF
    • …
    corecore