226 research outputs found

    Robust Energy Management for Green and Survivable IP Networks

    Get PDF
    Despite the growing necessity to make Internet greener, it is worth pointing out that energy-aware strategies to minimize network energy consumption must not undermine the normal network operation. In particular, two very important issues that may limit the application of green networking techniques concern, respectively, network survivability, i.e. the network capability to react to device failures, and robustness to traffic variations. We propose novel modelling techniques to minimize the daily energy consumption of IP networks, while explicitly guaranteeing, in addition to typical QoS requirements, both network survivability and robustness to traffic variations. The impact of such limitations on final network consumption is exhaustively investigated. Daily traffic variations are modelled by dividing a single day into multiple time intervals (multi-period problem), and network consumption is reduced by putting to sleep idle line cards and chassis. To preserve network resiliency we consider two different protection schemes, i.e. dedicated and shared protection, according to which a backup path is assigned to each demand and a certain amount of spare capacity has to be available on each link. Robustness to traffic variations is provided by means of a specific modelling framework that allows to tune the conservatism degree of the solutions and to take into account load variations of different magnitude. Furthermore, we impose some inter-period constraints necessary to guarantee network stability and preserve the device lifetime. Both exact and heuristic methods are proposed. Experimentations carried out with realistic networks operated with flow-based routing protocols (i.e. MPLS) show that significant savings, up to 30%, can be achieved also when both survivability and robustness are fully guaranteed

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    Overlay networks for smart grids

    Get PDF

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie

    Ontwerp en evaluatie van content distributie netwerken voor multimediale streaming diensten.

    Get PDF
    Traditionele Internetgebaseerde diensten voor het verspreiden van bestanden, zoals Web browsen en het versturen van e-mails, worden aangeboden via één centrale server. Meer recente netwerkdiensten zoals interactieve digitale televisie of video-op-aanvraag vereisen echter hoge kwaliteitsgaranties (QoS), zoals een lage en constante netwerkvertraging, en verbruiken een aanzienlijke hoeveelheid bandbreedte op het netwerk. Architecturen met één centrale server kunnen deze garanties moeilijk bieden en voldoen daarom niet meer aan de hoge eisen van de volgende generatie multimediatoepassingen. In dit onderzoek worden daarom nieuwe netwerkarchitecturen bestudeerd, die een dergelijke dienstkwaliteit kunnen ondersteunen. Zowel peer-to-peer mechanismes, zoals bij het uitwisselen van muziekbestanden tussen eindgebruikers, als servergebaseerde oplossingen, zoals gedistribueerde caches en content distributie netwerken (CDN's), komen aan bod. Afhankelijk van de bestudeerde dienst en de gebruikte netwerktechnologieën en -architectuur, worden gecentraliseerde algoritmen voor netwerkontwerp voorgesteld. Deze algoritmen optimaliseren de plaatsing van de servers of netwerkcaches en bepalen de nodige capaciteit van de servers en netwerklinks. De dynamische plaatsing van de aangeboden bestanden in de verschillende netwerkelementen wordt aangepast aan de heersende staat van het netwerk en aan de variërende aanvraagpatronen van de eindgebruikers. Serverselectie, herroutering van aanvragen en het verspreiden van de belasting over het hele netwerk komen hierbij ook aan bod

    Ambient intelligence in buildings : design and development of an interoperable Internet of Things platform

    Get PDF
    During many years, people and governments have been warned about the increasing levels of pollution and greenhouse gases (GHG) emissions that are endangering our lives on this planet. The Information and Communication Technology sector, usually known as the ICT sector, responsible for the computerization of the society, has been pinpointed as one of the most important sectors contributing to such a problem. Many efforts, however, have been put to shift the trend towards the utilization of renewable resources, such as wind or solar power. Even though governments have agreed to follow this path and avoid the usage of non-renewable energies, it is not enough. Although the ICT sector might seem an added problem due to the number of connected devices, technology improvements and hardware optimization enable new ways of fighting against global warming and GHG emissions. The aforementioned computerization has forced companies to evolve their work into a computer-assisted one. Due to this, companies are now forced to establish their main headquarters inside buildings for work coordination, connection and management. Due to this, buildings are becoming one of the most important issues regarding energy consumption. In order to cope with such problem, the Internet of Things (IoT) offers new paradigms and alternatives for leading the change. IoT is commonly defined as the network of physical and virtual objects that are capable of collecting surrounding data and exchanging it between them or through the Internet. Thanks to these networks, it is possible to monitor any thinkable metric inside buildings, and, then, utilize this information to build efficient automated systems, commonly known as Building Energy Management Systems (BEMS), capable of extracting conclusions on how to optimally and efficiently manage the resources of the building. ICT companies have foreseen this market opportunity that, paired with the appearance of smaller, efficient and more durable sensors, allows the development of efficient IoT systems. However, the lack of agreement and standardization creates chaos inside IoT, and the horizontal connectivity between such systems is still a challenge. Moreover, the vast amount of data to process requires the utilization of Big Data techniques to guarantee close to real-time responses. This thesis initially presents a standard Cloud-based IoT architecture that tries to cope with the aforementioned problems by employing a Cloud middleware that obfuscates the underlying hardware architecture and permits the aggregation of data from multiple heterogeneous sources. Also, sensor information is exposed to any third-party client after authentication. The utilization of automated IoT systems for managing building resources requires high reliability, resilience, and availability. The loss of sensor data is not permitted due to the negative consequences it might have, such as disruptive resource management. For this, it is mandatory to grant backup options to sensor networks in order to guarantee correct functioning in case of partial network disconnections. Additionally, the placement of the sensors inside the building must guarantee minimal energy consumption while fulfilling sensing requirements. Finally, a building resource management use case is presented by means of a simulation tool. The tool draws on occupants' probabilistic models and environmental condition models for actuating upon building elements to ensure optimal and efficient functioning. Occupants' comfort is also taken into consideration and the trade-off between the two metrics is studied. All the presented work is meant to deliver insights and tools for current and future IoT system implementations by setting the basis for standardization agreements yet to happen.Durant molts anys, s'ha alertat a la població i als governs sobre l'increment en els nivells de pol·lució i d'emissió de gasos d'efecte hivernacle, que estan posant en perill la nostra vida a la Terra. El sector de les Tecnologies de la Informació i Comunicació, normalment conegut com les TIC, responsable de la informatització de la societat, ha estat senyalat com un dels sectors més importants encarregat d'agreujar tal problema. Però, molt esforç s'està posant per revertir aquesta situació mitjançant l'ús de recursos renovables, com l'energia eòlica o solar. Tot i que els governs han acordat seguir dit camí i evitar l'ús d'energia no renovable tant com sigui possible, no és suficient per erradicar el problema. Encara que el sector de les TIC pugui semblar un problema afegit donada la gran quantitat i l'increment de dispositius connectats, les millores en tecnologia i en hardware estan habilitant noves maneres de lluitar contra l'escalfament global i l'emissió de gasos d'efecte hivernacle. La informatització, anteriorment mencionada, ha forçat a les empreses a evolucionar el seu model de negoci cap a un més enfocat a la utilització de xarxes d'ordinadors per gestionar els seus recursos. Per això, dites companyies s'estan veient forçades a establir les seves seus centrals dintre d'edificis, per tenir un major control sobre la coordinació, connexió i maneig dels seus recursos. Això està provocant un augment en el consum energètic dels edificis, que s'estan convertint en un dels principals problemes. Per poder fer front al problema, la Internet de les Coses o Internet of Things (IoT) ofereix nous paradigmes i alternatives per liderar el canvi. IoT es defineix com la xarxa d'objectes físics i virtuals, capaços de recol·lectar la informació per construir sistemes automatitzats, coneguts com a Sistemes de Gestió Energètica per Edificis, capaços d'extreure conclusions sobre com utilitzar de manera eficient i òptima els recursos de l'edifici. Companyies pertanyents a les TIC han previst aquesta oportunitat de mercat que, en sincronia amb l'aparició de sensors més petits, eficients i duradors, permeten el desenvolupament de sistemes IoT eficients. Però, la falta d'acord en quant a l'estandardització de dits sistemes està creant un escenari caòtic, ja que s'està fent impossible la connectivitat horitzontal entre dits sistemes. A més, la gran quantitat de dades a processar requereix la utilització de tècniques de Big Data per poder garantir respostes en temps acceptables. Aquesta tesi presenta, inicialment, una arquitectura IoT estàndard basada en la Neu, que tracta de fer front als problemes anteriorment presentats mitjançant l'ús d'un middleware allotjat a la Neu que ofusca l'arquitectura hardware subjacent i permet l'agregació de la informació originada des de múltiples fonts heterogènies. A més, la informació dels sensors s'exposa perquè qualsevol client de tercers pugui consultar-la, després d'haver-se autenticat. La utilització de sistemes IoT automatitzats per gestionar els recursos dels edificis requereix un alt nivell de fiabilitat, resistència i disponibilitat. La perduda d'informació no està permesa degut a les conseqüències negatives que podría suposar, com una mala presa de decisions. Per això, és obligatori atorgar opcions de backup a les xarxes de sensors per garantir un correcte funcionament inclús quan es produeixen desconnexions parcials de la xarxa. Addicionalment, la col·locació dels sensors dintre de l'edifici ha de garantir un consum energètic mínim dintre de les restriccions de desplegament imposades. Finalment, presentem un cas d'ús d'un Sistema de Gestió Energètica per Edificis mitjançant una eina de simulació. Dita eina utilitza com informació d'entrada models probabilístics sobre les accions dels ocupants i models sobre la condició ambiental per actuar sobre els elements de l'edifici i garantir un funcionament òptim i eficient. A més, el confort dels ocupants també es considera com mètrica a optimitzar. Donada la impossibilitat d’optimitzar les dues mètriques de manera conjunta, aquesta tesi també presenta un estudi sobre el trade-off que existeix entre elles. Tot el treball presentat està pensat per atorgar idees i eines pels sistemes IoT actuals i futurs, i assentar les bases per l’estandardització que encara està per arribar.Durante muchos años, se ha alertado a la población y a los gobiernos acerca del incremento en los niveles de polución y de emisión de gases de efecto invernadero, que están poniendo en peligro nuestra vida en la Tierra. El sector de las Tecnologías de la Información y Comunicación, normalmente conocido como las TIC, responsable de la informatización de la sociedad, ha sido señalada como uno de los sectores más importantes encargado de agravar tal problema. Sin embargo, mucho esfuerzo se está poniendo para revertir esta situación mediante el uso de recursos renovables, como la energía eólica o solar. A pesar de que los gobiernos han acordado seguir dicho camino y evitar el uso de energía no renovable tanto como sea posible, no es suficiente para erradicar el problema. Aunque el sector de las TIC pueda parecer un problema añadido dada la gran cantidad y el incremento de dispositivos conectados, las mejoras en tecnología y en hardware están habilitando nuevas maneras de luchar contra el calentamiento global y la emisión de gases de efecto invernadero. Durante las últimas décadas, compañías del sector público y privado conscientes del problema han centrado sus esfuerzos en la creación de soluciones orientadas a la eficiencia energética tanto a nivel de hardware como de software. Las nuevas redes troncales están siendo creadas con dispositivos eficientes y los proveedores de servicios de Internet tienden a crear sistemas conscientes de la energía para su optimización dentro de su dominio. Siguiendo esta tendencia, cualquier nuevo sistema creado y añadido a la red debe garantizar un cierto nivel de conciencia y un manejo óptimo de los recursos que utiliza. La informatización, anteriormente mencionada, ha forzado a las empresas a evolucionar su modelo de negocio hacia uno más enfocado en la utilización de redes de ordenadores para gestionar sus recursos. Por eso, dichas compañías se están viendo forzadas a establecer sus sedes centrales dentro de edificios, para tener un mayor control sobre la coordinación, conexión y manejo de sus recursos. Esto está provocando un aumento en el consumo energético de los edificios, que se están convirtiendo en uno de los principales problemas. Para poder hacer frente al problema, el Internet de las Cosas o Internet of Things (IoT) ofrece nuevos paradigmas y alternativas para liderar el cambio. IoT se define como la red de objetos físicos y virtuales, capaces de recolectar la información del entorno e intercambiarla entre los propios objetos o a través de Internet. Gracias a estas redes, es posible monitorizar cualquier métrica que podamos imaginar dentro de un edificio, y, después, utilizar dicha información para construir sistemas automatizados, conocidos como Sistemas de Gestión Energética para Edificios, capaces de extraer conclusiones sobre cómo utilizar de manera eficiente y óptima los recursos del edificio. Compañías pertenecientes a las TIC han previsto esta oportunidad de mercado que, en sincronía con la aparición de sensores más pequeños, eficientes y duraderos, permite el desarrollo de sistemas IoT eficientes. Sin embargo, la falta de acuerdo en cuanto a la estandarización de dichos sistemas está creando un escenario caótico, ya que se hace imposible la conectividad horizontal entre dichos sistemas. Además, la gran cantidad de datos a procesar requiere la utilización de técnicas de Big Data para poder garantizar respuestas en tiempos aceptables. Esta tesis presenta, inicialmente, una arquitectura IoT estándar basada en la Nube que trata de hacer frente a los problemas anteriormente presentados mediante el uso de un middleware alojado en la Nube que ofusca la arquitectura hardware subyacente y permite la agregación de la información originada des de múltiples fuentes heterogéneas. Además, la información de los sensores se expone para que cualquier cliente de terceros pueda consultarla, después de haberse autenticado. La utilización de sistemas IoT automatizados para manejar los recursos de los edificios requiere un alto nivel de fiabilidad, resistencia y disponibilidad. La pérdida de información no está permitida debido a las consecuencias negativas que podría suponer, como una mala toma de decisiones. Por eso, es obligatorio otorgar opciones de backup a las redes de sensores para garantizar su correcto funcionamiento incluso cuando se producen desconexiones parciales de la red. Adicionalmente, la colocación de los sensores dentro del edificio debe garantizar un consumo energético mínimo dentro de las restricciones de despliegue impuestas. En esta tesis, mejoramos el problema de colocación de los sensores para redes heterogéneas de sensores inalámbricos añadiendo restricciones de clustering o agrupamiento, para asegurar que cada tipo de sensor es capaz de obtener su métrica correspondiente, y restricciones de protección mediante la habilitación de rutas de transmisión secundarias. En cuanto a grandes redes homogéneas de sensores inalámbricos, esta tesis estudia aumentar su resiliencia mediante la identificación de los sensores más críticos. Finalmente, presentamos un caso de uso de un Sistema de Gestión Energética para Edificios mediante una herramienta de simulación. Dicha herramienta utiliza como información de entrada modelos probabilísticos sobre las acciones de los ocupantes y modelos sobre la condición ambiental para actuar sobre los elementos del edificio y garantizar un funcionamiento óptimo y eficiente. Además, el comfort de los ocupantes también se considera como métrica a optimizar. Dada la imposibilidad de optimizar las dos métricas de manera conjunta, esta tesis también presenta un estudio sobre el trade-off que existe entre ellas. Todo el trabajo presentado está pensado para otorgar ideas y herramientas para los sistemas IoT actuales y futuros, y asentar las bases para la estandarización que todavía está por llegar.Postprint (published version

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producción CientíficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Economía, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT

    Energy-Aware Traffic Engineering for Wired IP Networks

    Get PDF
    RÉSUMÉ Même si l'Internet est souvent considéré comme un moyen formidable pour réduire l'impact des activités humaines sur l'environnement, sa consommation d'énergie est en train de devenir un problème en raison de la croissance exponentielle du trafic et de l'expansion rapide des infrastructures de communication dans le monde entier. En 2007, il a été estimé que les équipements de réseau (sans tenir compte de serveurs dans les centres de données) étaient responsables d'une consommation d'énergie de 22 GW, alors qu'en 2010 la consommation annuelle des plus grands fournisseurs de services Internet (par exemple AT$T) a dépassé 10 TWh par an. En raison de cette tendance alarmante, la réduction de la consommation d'énergie dans les réseaux de télécommunication, et en particulier dans les réseaux IP, est récemment devenue une priorité. Une des stratégies les plus prometteuses pour rendre plus vert l'Internet est le sleep-based energy-aware network management (SEANM), selon lequel la configuration de réseau est adaptée aux niveaux de trafic afin d'endormir tous les éléments redondantes du réseau. Dans cette thèse nous développons plusieurs approches centralisées de SEANM, afin d'optimiser la configuration de réseaux IP qui utilisent différents protocoles (OSPF or MPLS) ou transportent différents types de trafic (élastique or inélastique). Le choix d'adresser le problème d'une manière centralisée, avec une plate-forme de gestion unique qui est responsable de la configuration et de la surveillance de l'ensemble du réseau, est motivée par la nécessité d'opérateurs de maintenir en tout temps le contrôle complet sur le réseau. Visant à mettre en œuvre les approches proposées dans un environnement réaliste du réseau, nous présentons aussi un nouveau cadre de gestion de réseau entièrement configurable que nous avons appelé JNetMan. JNetMan a été exploité pour tester une version dynamique de la procédure SEANM développée pour les réseaux utilisant OSPF.----------ABSTRACT Even if the Internet is commonly considered a formidable means to reduce the impact of human activities on the environment, its energy consumption is rapidly becoming an issue due to the exponential traffic growth and the rapid expansion of communication infrastructures worldwide. Estimated consumption of the network equipment, excluding servers in data centers, in 2007 was 22 GW, while in 2010 the yearly consumption of the largest Internet Service Providers, e.g., AT&T, exceeded 10 TWh per year. The growing energy trend has motivated the development of new strategies to reduce the consumption of telecommunication networks, with particular focus on IP networks. In addition to the development of a new generation of green network equipment, a second possible strategy to optimize the IP network consumption is represented by sleep-based energy-aware network management (SEANM), which aims at adapting the whole network power consumption to the traffic levels by optimizing the network configuration and putting to sleep the redundant network elements. Device sleeping represents the main potential source of saving because the consumption of current network devices is not proportional to the utilization level: so that, the overall network consumption is constantly close to maximum. In current IP networks, quality of service (QoS) and network resilience to failures are typically guaranteed by substantially over-dimensioning the whole network infrastructure: therefore, also during peak hours, it could be possible to put to sleep a non-negligible subset of redundant network devices. Due to the heterogeneity of current network technologies, in this thesis, we focus our efforts to develop centralized SEANM approaches for IP networks operated with different configurations and protocols. More precisely, we consider networks operated with different routing schemes, namely shortest path (OSPF), flow-based (MPLS) and take into account different types of traffic, i.e., elastic or inelastic. The centralized approach, with a single management platform responsible for configuring and monitoring the whole network, is motivated by the need of network operators to be constantly in control of the network dynamics. To fully guarantee network stability, we investigate the impact of SEANM on network reliability to failures and robustness to traffic variations. Ad hoc modeling techniques are integrated within the proposed SEANM frameworks to explicitly consider resilience and robustness as network constraints. Finally, to implement the proposed procedures in a realistic network environment, we propose a novel, fully configurable network management framework, called JNetMan. We use JNetMan to develop and test a dynamic version of the SEANM procedure for IP networks operated with shortest path routing protocols

    Resilient scalable internet routing and embedding algorithms

    Get PDF

    A Survey on the Path Computation Element (PCE) Architecture

    Get PDF
    Quality of Service-enabled applications and services rely on Traffic Engineering-based (TE) Label Switched Paths (LSP) established in core networks and controlled by the GMPLS control plane. Path computation process is crucial to achieve the desired TE objective. Its actual effectiveness depends on a number of factors. Mechanisms utilized to update topology and TE information, as well as the latency between path computation and resource reservation, which is typically distributed, may affect path computation efficiency. Moreover, TE visibility is limited in many network scenarios, such as multi-layer, multi-domain and multi-carrier networks, and it may negatively impact resource utilization. The Internet Engineering Task Force (IETF) has promoted the Path Computation Element (PCE) architecture, proposing a dedicated network entity devoted to path computation process. The PCE represents a flexible instrument to overcome visibility and distributed provisioning inefficiencies. Communications between path computation clients (PCC) and PCEs, realized through the PCE Protocol (PCEP), also enable inter-PCE communications offering an attractive way to perform TE-based path computation among cooperating PCEs in multi-layer/domain scenarios, while preserving scalability and confidentiality. This survey presents the state-of-the-art on the PCE architecture for GMPLS-controlled networks carried out by research and standardization community. In this work, packet (i.e., MPLS-TE and MPLS-TP) and wavelength/spectrum (i.e., WSON and SSON) switching capabilities are the considered technological platforms, in which the PCE is shown to achieve a number of evident benefits
    corecore