86,487 research outputs found

    Deformable Object Tracking with Gated Fusion

    Full text link
    The tracking-by-detection framework receives growing attentions through the integration with the Convolutional Neural Networks (CNNs). Existing tracking-by-detection based methods, however, fail to track objects with severe appearance variations. This is because the traditional convolutional operation is performed on fixed grids, and thus may not be able to find the correct response while the object is changing pose or under varying environmental conditions. In this paper, we propose a deformable convolution layer to enrich the target appearance representations in the tracking-by-detection framework. We aim to capture the target appearance variations via deformable convolution, which adaptively enhances its original features. In addition, we also propose a gated fusion scheme to control how the variations captured by the deformable convolution affect the original appearance. The enriched feature representation through deformable convolution facilitates the discrimination of the CNN classifier on the target object and background. Extensive experiments on the standard benchmarks show that the proposed tracker performs favorably against state-of-the-art methods

    SANet: Structure-Aware Network for Visual Tracking

    Full text link
    Convolutional neural network (CNN) has drawn increasing interest in visual tracking owing to its powerfulness in feature extraction. Most existing CNN-based trackers treat tracking as a classification problem. However, these trackers are sensitive to similar distractors because their CNN models mainly focus on inter-class classification. To address this problem, we use self-structure information of object to distinguish it from distractors. Specifically, we utilize recurrent neural network (RNN) to model object structure, and incorporate it into CNN to improve its robustness to similar distractors. Considering that convolutional layers in different levels characterize the object from different perspectives, we use multiple RNNs to model object structure in different levels respectively. Extensive experiments on three benchmarks, OTB100, TC-128 and VOT2015, show that the proposed algorithm outperforms other methods. Code is released at http://www.dabi.temple.edu/~hbling/code/SANet/SANet.html.Comment: In CVPR Deep Vision Workshop, 201

    Causally Regularized Learning with Agnostic Data Selection Bias

    Full text link
    Most of previous machine learning algorithms are proposed based on the i.i.d. hypothesis. However, this ideal assumption is often violated in real applications, where selection bias may arise between training and testing process. Moreover, in many scenarios, the testing data is not even available during the training process, which makes the traditional methods like transfer learning infeasible due to their need on prior of test distribution. Therefore, how to address the agnostic selection bias for robust model learning is of paramount importance for both academic research and real applications. In this paper, under the assumption that causal relationships among variables are robust across domains, we incorporate causal technique into predictive modeling and propose a novel Causally Regularized Logistic Regression (CRLR) algorithm by jointly optimize global confounder balancing and weighted logistic regression. Global confounder balancing helps to identify causal features, whose causal effect on outcome are stable across domains, then performing logistic regression on those causal features constructs a robust predictive model against the agnostic bias. To validate the effectiveness of our CRLR algorithm, we conduct comprehensive experiments on both synthetic and real world datasets. Experimental results clearly demonstrate that our CRLR algorithm outperforms the state-of-the-art methods, and the interpretability of our method can be fully depicted by the feature visualization.Comment: Oral paper of 2018 ACM Multimedia Conference (MM'18
    • …
    corecore