2,967 research outputs found

    Predictive Control for Alleviation of Gust Loads on Very Flexible Aircraft

    No full text
    In this work the dynamics of very flexible aircraft are described by a set of non-linear, multi-disciplinary equations of motion. Primary structural components are represented by a geometrically-exact composite beam model which captures the large dynamic deformations of the aircraft and the interaction between rigid-body and elastic degrees-of-freedom. In addition, an implementation of the unsteady vortex-lattice method capable of handling arbitrary kinematics is used to capture the unsteady, three-dimensional flow-eld around the aircraft as it deforms. Linearization of this coupled nonlinear description, which can in general be about a nonlinear reference state, is performed to yield relatively high-order linear time-invariant state-space models. Subsequent reduction of these models using standard balanced truncation results in low-order models suitable for the synthesis of online, optimization-based control schemes that incorporate actuator constraints. Predictive controllers are synthesized using these reduced-order models and applied to nonlinear simulations of the plant dynamics where they are shown to be superior to equivalent optimal linear controllers (LQR) for problems in which constraints are active

    Enhancing the drilling efficiency through the application of machine learning and optimization algorithm.

    Get PDF
    This article presents a novel Artificial Intelligence (AI) workflow to enhance drilling performance by mitigating the adverse impact of drill-string vibrations on drilling efficiency. The study employs three supervised machine learning (ML) algorithms, namely the Multi-Layer Perceptron (MLP), Support Vector Regression (SVR), and Regression Decision Tree (DTR), to train models for bit rotation (Bit RPM), rate of penetration (ROP), and torque. These models combine to form a digital twin for a drilling system and are validated through extensive cross-validation procedures against actual drilling parameters using field data. The combined SVR - Bit RPM model is then used to categorize torsional vibrations and constrain optimized parameter selection using the Particle Swarm Optimisation block (PSO). The SVR-ROP model is integrated with a PSO under two constraints: Stick Slip Index (SSI<0.05) and Depth of Cut (DOC<5 mm) to further improve torsional stability. Simulations predict a 43% increase in ROP and torsional stability on average when the optimized parameters WOB and RPM are applied. This would avoid the need to trip in/out to change the bit, and the drilling time can be reduced from 66 to 31 hours. The findings of this study illustrate the system's competency in determining optimal drilling parameters and boosting drilling efficiency. Integrating AI techniques offers valuable insights and practical solutions for drilling optimization, particularly in terms of saving drilling time and improving the ROP, which increases potential savings

    Enhancing the drilling efficiency through the application of machine learning and optimization algorithm

    Get PDF
    Acknowledgment We would like to acknowledge the collaborative efforts of SONATRACH Group, and the universities involved in this research (Université de Boumerdes, Université de laghouat and University of Aberdeen).Peer reviewedPublisher PD

    Observer-based Fault Detection and Diagnosis for Mechanical Transmission Systems with Sensorless Variable Speed Drives

    Get PDF
    Observer based approaches are commonly embedded in sensorless variable speed drives for the purpose of speed control. It estimates system variables to produce errors or residual signals in conjunction with corresponding measurements. The residual signals then are relied to tune control parameters to maintain operational performance even if there are considerable disturbances such as noises and component faults. Obviously, this control strategy outcomes robust control performances. However, it may produce adverse consequences to the system when faults progress to high severity. To prevent the occurrences of such consequences, this research proposes the utilisation of residual signals as detection features to raise alerts for incipient faults. Based on a gear transmission system with a sensorless variable speed drive (VSD), observers for speed, flux and torque are developed for examining their residuals under two mechanical faults: tooth breakage with different degrees of severities and shortage of lubricant at different levels are investigated. It shows that power residual signals can be based on to indicate different faults, showing that the observer based approaches are effective for monitoring VSD based mechanical systems. Moreover, it also shows that these two types fault can be separated based on the dynamic components in the voltage signals

    Mitigating the Torque Ripple in Electric Traction using Proportional Integral Resonant Controller

    Get PDF
    • …
    corecore