776 research outputs found

    Integrated Evaluation Platform for Secured Devices

    Get PDF
    International audienceIn this paper, we describe the structure of a FPGAsmart card emulator. The aim of such an emulator is to improvethe behaviour of the whole architecture when faults occur. Withinthis card, an embedded Advanced Encryption Standard (AES)protected against DFA is inserted as well as a fault injectionblock. We also present the microprocessor core which controlsthe whole card

    Link-time smart card code hardening

    Get PDF
    This paper presents a feasibility study to protect smart card software against fault-injection attacks by means of link-time code rewriting. This approach avoids the drawbacks of source code hardening, avoids the need for manual assembly writing, and is applicable in conjunction with closed third-party compilers. We implemented a range of cookbook code hardening recipes in a prototype link-time rewriter and evaluate their coverage and associated overhead to conclude that this approach is promising. We demonstrate that the overhead of using an automated link-time approach is not significantly higher than what can be obtained with compile-time hardening or with manual hardening of compiler-generated assembly code

    Design and implementation of robust embedded processor for cryptographic applications

    Get PDF
    Practical implementations of cryptographic algorithms are vulnerable to side-channel analysis and fault attacks. Thus, some masking and fault detection algorithms must be incorporated into these implementations. These additions further increase the complexity of the cryptographic devices which already need to perform computationally-intensive operations. Therefore, the general-purpose processors are usually supported by coprocessors/hardware accelerators to protect as well as to accelerate cryptographic applications. Using a configurable processor is just another solution. This work designs and implements robust execution units as an extension to a configurable processor, which detect the data faults (adversarial or otherwise) while performing the arithmetic operations. Assuming a capable adversary who can injects faults to the cryptographic computation with high precision, a nonlinear error detection code with high error detection capability is used. The designed units are tightly integrated to the datapath of the configurable processor using its tool chain. For different configurations, we report the increase in the space and time complexities of the configurable processor. Also, we present performance evaluations of the software implementations using the robust execution units. Implementation results show that it is feasible to implement robust arithmetic units with relatively low overhead in an embedded processor

    Design and evaluation of countermeasures against fault injection attacks and power side-channel leakage exploration for AES block cipher

    Get PDF
    Differential Fault Analysis (DFA) and Power Analysis (PA) attacks, have become the main methods for exploiting the vulnerabilities of physical implementations of block ciphers, currently used in a multitude of applications, such as the Advanced Encryption Standard (AES). In order to minimize these types of vulnerabilities, several mechanisms have been proposed to detect fault attacks. However, these mechanisms can have a signi cant cost, not fully covering the implementations against fault attacks or not taking into account the leakage of the information exploitable by the power analysis attacks. In this paper, four different approaches are proposed with the aim of protecting the AES block cipher against DFA. The proposed solutions are based on Hamming code and parity bits as signature generators for the internal state of the AES cipher. These allow to detect DFA exploitable faults, from bit to byte level. The proposed solutions have been applied to a T-box based AES block cipher implemented on Field Programmable Gate Array (FPGA). Experimental results suggest a fault coverage of 98.5% and 99.99% with an area penalty of 9% and 36% respectively, for the parity bit signature generators and a fault coverage of 100% with an area penalty of 18% and 42% respectively when Hamming code signature generator is used. In addition, none of the proposed countermeasures impose a frequency degradation, in respect to the unprotected cipher. The proposed work goes further in the evaluation of the proposed DFA countermeasures by evaluating the impact of these structures in terms of power side-channel. The obtained results suggest that no extra information leakage is produced that can be exploited by PA. Overall, the proposed DFA countermeasures provide a high fault coverage protection with a low cost in terms of area and power consumption and no PA security degradation

    Lightweight protection of cryptographic hardware accelerators against differential fault analysis

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Hardware acceleration circuits for cryptographic algorithms are largely deployed in a wide range of products. The HW implementations of such algorithms often suffer from a number of vulnerabilities that expose systems to several attacks, e.g., differential fault analysis (DFA). The challenge for designers is to protect cryptographic accelerators in a cost-effective and power-efficient way. In this paper, we propose a lightweight technique for protecting hardware accelerators implementing AES and SHA-2 (which are two widely used NIST standards) against DFA. The proposed technique exploits partial redundancy to first detect the occurrence of a fault and then to react to the attack by obfuscating the output values. An experimental campaign demonstrated that the overhead introduced is 8.32% for AES and 3.88% for SHA-2 in terms of area, 0.81% for AES and 12.31% for SHA-2 in terms of power with no working frequency reduction. Moreover, a comparative analysis showed that our proposal outperforms the most recent related countermeasures.Peer ReviewedPostprint (author's final draft

    Lightweight Architectures for Reliable and Fault Detection Simon and Speck Cryptographic Algorithms on FPGA

    Get PDF
    The widespread use of sensitive and constrained applications necessitates lightweight (lowpower and low-area) algorithms developed for constrained nano-devices. However, nearly all of such algorithms are optimized for platform-based performance and may not be useful for diverse and flexible applications. The National Security Agency (NSA) has proposed two relatively-recent families of lightweight ciphers, i.e., Simon and Speck, designed as efficient ciphers on both hardware and software platforms. This paper proposes concurrent error detection schemes to provide reliable architectures for these two families of lightweight block ciphers. The research work on analyzing the reliability of these algorithms and providing fault diagnosis approaches has not been undertaken to date to the best of our knowledge. The main aim of the proposed reliable architectures is to provide high error coverage while maintaining acceptable area and power consumption overheads. To achieve this, we propose a variant of recomputing with encoded operands. These low-complexity schemes are suited for lowresource applications such as sensitive, constrained implantable and wearable medical devices. We perform fault simulations for the proposed architectures by developing a fault model framework. The architectures are simulated and analyzed on recent field-programmable grate array (FPGA) platforms, and it is shown that the proposed schemes provide high error coverage. The proposed low-complexity concurrent error detection schemes are a step forward towards more reliable architectures for Simon and Speck algorithms in lightweight, secure applications

    Trojans in Early Design Steps—An Emerging Threat

    Get PDF
    Hardware Trojans inserted by malicious foundries during integrated circuit manufacturing have received substantial attention in recent years. In this paper, we focus on a different type of hardware Trojan threats: attacks in the early steps of design process. We show that third-party intellectual property cores and CAD tools constitute realistic attack surfaces and that even system specification can be targeted by adversaries. We discuss the devastating damage potential of such attacks, the applicable countermeasures against them and their deficiencies
    • …
    corecore