17,224 research outputs found

    Peaks detection and alignment for mass spectrometry data

    Get PDF
    The goal of this paper is to review existing methods for protein mass spectrometry data analysis, and to present a new methodology for automatic extraction of significant peaks (biomarkers). For the pre-processing step required for data from MALDI-TOF or SELDI- TOF spectra, we use a purely nonparametric approach that combines stationary invariant wavelet transform for noise removal and penalized spline quantile regression for baseline correction. We further present a multi-scale spectra alignment technique that is based on identification of statistically significant peaks from a set of spectra. This method allows one to find common peaks in a set of spectra that can subsequently be mapped to individual proteins. This may serve as useful biomarkers in medical applications, or as individual features for further multidimensional statistical analysis. MALDI-TOF spectra obtained from serum samples are used throughout the paper to illustrate the methodology

    Smart Power Grid Synchronization With Fault Tolerant Nonlinear Estimation

    Get PDF
    Effective real-time state estimation is essential for smart grid synchronization, as electricity demand continues to grow, and renewable energy resources increase their penetration into the grid. In order to provide a more reliable state estimation technique to address the problem of bad data in the PMU-based power synchronization, this paper presents a novel nonlinear estimation framework to dynamically track frequency, voltage magnitudes and phase angles. Instead of directly analyzing in abc coordinate frame, symmetrical component transformation is employed to separate the positive, negative, and zero sequence networks. Then, Clarke\u27s transformation is used to transform the sequence networks into the αβ stationary coordinate frame, which leads to system model formulation. A novel fault tolerant extended Kalman filter based real-time estimation framework is proposed for smart grid synchronization with noisy bad data measurements. Computer simulation studies have demonstrated that the proposed fault tolerant extended Kalman filter (FTEKF) provides more accurate voltage synchronization results than the extended Kalman filter (EKF). The proposed approach has been implemented with dSPACE DS1103 and National Instruments CompactRIO hardware platforms. Computer simulation and hardware instrumentation results have shown the potential applications of FTEKF in smart grid synchronization

    Listening to features

    Get PDF
    This work explores nonparametric methods which aim at synthesizing audio from low-dimensionnal acoustic features typically used in MIR frameworks. Several issues prevent this task to be straightforwardly achieved. Such features are designed for analysis and not for synthesis, thus favoring high-level description over easily inverted acoustic representation. Whereas some previous studies already considered the problem of synthesizing audio from features such as Mel-Frequency Cepstral Coefficients, they mainly relied on the explicit formula used to compute those features in order to inverse them. Here, we instead adopt a simple blind approach, where arbitrary sets of features can be used during synthesis and where reconstruction is exemplar-based. After testing the approach on a speech synthesis from well known features problem, we apply it to the more complex task of inverting songs from the Million Song Dataset. What makes this task harder is twofold. First, that features are irregularly spaced in the temporal domain according to an onset-based segmentation. Second the exact method used to compute these features is unknown, although the features for new audio can be computed using their API as a black-box. In this paper, we detail these difficulties and present a framework to nonetheless attempting such synthesis by concatenating audio samples from a training dataset, whose features have been computed beforehand. Samples are selected at the segment level, in the feature space with a simple nearest neighbor search. Additionnal constraints can then be defined to enhance the synthesis pertinence. Preliminary experiments are presented using RWC and GTZAN audio datasets to synthesize tracks from the Million Song Dataset.Comment: Technical Repor

    Multisensor-based human detection and tracking for mobile service robots

    Get PDF
    The one of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In the present paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based legs detection using the on-board LRF. The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to be very discriminative also in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera and the information is fused to the legs position using a sequential implementation of Unscented Kalman Filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments

    Variable-Frequency Grid-Sequence Detector Based on a Quasi-Ideal Low-Pass Filter Stage and a Phase-Locked Loop

    Get PDF
    This paper proposes a filtered-sequence phase-locked loop (FSPLL) structure for detection of the positive sequence in three-phase systems. The structure includes the use of the Park transformation and moving average filters (MAF). Performance of the MAF is mathematically analyzed and represented in Bode diagrams. The analysis allows a proper selection of the window width of the optimal filter for its application in the dq transformed variables. The proposed detector structure allows fast detection of the grid voltage positive sequence (within one grid voltage cycle). The MAF eliminates completely any oscillation multiple of the frequency for which it is designed; thus, this algorithm is not affected by the presence of imbalances or harmonics in the electrical grid. Furthermore, the PLL includes a simple-frequency detector that makes frequency adaptive the frequency depending blocks. This guarantees the proper operation of the FSPLL under large frequency changes. The performance of the entire PLL-based detector is verified through simulation and experiment. It shows veryPeer ReviewedPostprint (published version

    Online Bearing Remaining Useful Life Prediction Based on a Novel Degradation Indicator and Convolutional Neural Networks

    Full text link
    In industrial applications, nearly half the failures of motors are caused by the degradation of rolling element bearings (REBs). Therefore, accurately estimating the remaining useful life (RUL) for REBs are of crucial importance to ensure the reliability and safety of mechanical systems. To tackle this challenge, model-based approaches are often limited by the complexity of mathematical modeling. Conventional data-driven approaches, on the other hand, require massive efforts to extract the degradation features and construct health index. In this paper, a novel online data-driven framework is proposed to exploit the adoption of deep convolutional neural networks (CNN) in predicting the RUL of bearings. More concretely, the raw vibrations of training bearings are first processed using the Hilbert-Huang transform (HHT) and a novel nonlinear degradation indicator is constructed as the label for learning. The CNN is then employed to identify the hidden pattern between the extracted degradation indicator and the vibration of training bearings, which makes it possible to estimate the degradation of the test bearings automatically. Finally, testing bearings' RULs are predicted by using a ϵ\epsilon-support vector regression model. The superior performance of the proposed RUL estimation framework, compared with the state-of-the-art approaches, is demonstrated through the experimental results. The generality of the proposed CNN model is also validated by transferring to bearings undergoing different operating conditions

    Control optimization, stabilization and computer algorithms for aircraft applications

    Get PDF
    The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory
    corecore