5,836 research outputs found

    General Dynamic Scene Reconstruction from Multiple View Video

    Get PDF
    This paper introduces a general approach to dynamic scene reconstruction from multiple moving cameras without prior knowledge or limiting constraints on the scene structure, appearance, or illumination. Existing techniques for dynamic scene reconstruction from multiple wide-baseline camera views primarily focus on accurate reconstruction in controlled environments, where the cameras are fixed and calibrated and background is known. These approaches are not robust for general dynamic scenes captured with sparse moving cameras. Previous approaches for outdoor dynamic scene reconstruction assume prior knowledge of the static background appearance and structure. The primary contributions of this paper are twofold: an automatic method for initial coarse dynamic scene segmentation and reconstruction without prior knowledge of background appearance or structure; and a general robust approach for joint segmentation refinement and dense reconstruction of dynamic scenes from multiple wide-baseline static or moving cameras. Evaluation is performed on a variety of indoor and outdoor scenes with cluttered backgrounds and multiple dynamic non-rigid objects such as people. Comparison with state-of-the-art approaches demonstrates improved accuracy in both multiple view segmentation and dense reconstruction. The proposed approach also eliminates the requirement for prior knowledge of scene structure and appearance

    Point cloud segmentation using hierarchical tree for architectural models

    Full text link
    Recent developments in the 3D scanning technologies have made the generation of highly accurate 3D point clouds relatively easy but the segmentation of these point clouds remains a challenging area. A number of techniques have set precedent of either planar or primitive based segmentation in literature. In this work, we present a novel and an effective primitive based point cloud segmentation algorithm. The primary focus, i.e. the main technical contribution of our method is a hierarchical tree which iteratively divides the point cloud into segments. This tree uses an exclusive energy function and a 3D convolutional neural network, HollowNets to classify the segments. We test the efficacy of our proposed approach using both real and synthetic data obtaining an accuracy greater than 90% for domes and minarets.Comment: 9 pages. 10 figures. Submitted in EuroGraphics 201

    Visual 3-D SLAM from UAVs

    Get PDF
    The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every issue of the whole process is discussed in order to obtain more accurate localization and mapping from UAVs flights. Firstly, the issues related to the visual features of objects in the scene, their distance to the UAV, and the related image acquisition system and their calibration are evaluated for improving the whole process. Other important, considered issues are related to the image processing techniques, such as interest point detection, the matching procedure and the scaling factor. The whole system has been tested using the COLIBRI mini UAV in partially structured environments. The results that have been obtained for localization, tested against the GPS information of the flights, show that Visual SLAM delivers reliable localization and mapping that makes it suitable for some outdoors applications when flying UAVs

    A Cross-Season Correspondence Dataset for Robust Semantic Segmentation

    Full text link
    In this paper, we present a method to utilize 2D-2D point matches between images taken during different image conditions to train a convolutional neural network for semantic segmentation. Enforcing label consistency across the matches makes the final segmentation algorithm robust to seasonal changes. We describe how these 2D-2D matches can be generated with little human interaction by geometrically matching points from 3D models built from images. Two cross-season correspondence datasets are created providing 2D-2D matches across seasonal changes as well as from day to night. The datasets are made publicly available to facilitate further research. We show that adding the correspondences as extra supervision during training improves the segmentation performance of the convolutional neural network, making it more robust to seasonal changes and weather conditions.Comment: In Proc. CVPR 201

    Active Image-based Modeling with a Toy Drone

    Full text link
    Image-based modeling techniques can now generate photo-realistic 3D models from images. But it is up to users to provide high quality images with good coverage and view overlap, which makes the data capturing process tedious and time consuming. We seek to automate data capturing for image-based modeling. The core of our system is an iterative linear method to solve the multi-view stereo (MVS) problem quickly and plan the Next-Best-View (NBV) effectively. Our fast MVS algorithm enables online model reconstruction and quality assessment to determine the NBVs on the fly. We test our system with a toy unmanned aerial vehicle (UAV) in simulated, indoor and outdoor experiments. Results show that our system improves the efficiency of data acquisition and ensures the completeness of the final model.Comment: To be published on International Conference on Robotics and Automation 2018, Brisbane, Australia. Project Page: https://huangrui815.github.io/active-image-based-modeling/ The author's personal page: http://www.sfu.ca/~rha55
    • …
    corecore