6 research outputs found

    Robust Physical Layer Security for Power Domain Non-Orthogonal Multiple Access-Based HetNets and HUDNs: SIC Avoidance at Eavesdroppers

    Get PDF
    In this paper, we investigate the physical layer security in downlink of Power Domain Non-Orthogonal Multiple Access (PD-NOMA)-based heterogeneous cellular network (HetNet). In this paper, we assume two categories of users are available: 1) Trusted users and 2) untrusted users (eavesdroppers) at which transparency of users is not clear for the BSs, i.e., they are potential eavesdroppers. Our aim is to maximize the sum secrecy rate of the network. To this end, we formulate joint subcarrier and power allocation optimization problems to increase sum secrecy rate. Moreover, we propose a novel scheme at which the eavesdroppers are prevented from doing Successive Interference Cancellation (SIC), while legitimate users are able to do it. In practical systems, perfectly availability of all eavesdroppers' Channel State Information (CSI) at legitimate transmitters are impractical. Also CSIs of legitimate users may be also imperfect due to the error of channel estimation. Hence, we study two cases of CSI availability: 1) Perfect CSI of nodes (legitimate users and eavesdroppers) are available at the BSs and 2) imperfect CSI of nodes are available at the BSs. Since the proposed optimization problems are non-convex, we adopt the well-known iterative algorithm called Alternative Search Method (ASM). In this algorithm, the optimization problems are converted to two subproblems, power allocation and subcarrier allocation. We solve the power allocation problem by the Successive Convex Approximation approach and solve the subcarrier allocation subproblem, by exploiting the Mesh Adaptive Direct Search algorithm (MADS). Moreover, in order to study the optimality gap of the proposed solution method, we apply the monotonic optimization method. Moreover, we evaluate the proposed scheme for secure massive connectivity in Heterogeneous Ultra Dense Networks (HUDNs). Furthermore, we investigate multiple antennas base stations scenario in this literature. Finally, we numerically compare the proposed scheme with the conventional case at which the eavesdroppers are able to apply SIC. Numerical results highlight that the proposed scheme significantly improves the sum secrecy rate compared with the conventional case

    A Survey on the Security and the Evolution of Osmotic and Catalytic Computing for 5G Networks

    Full text link
    The 5G networks have the capability to provide high compatibility for the new applications, industries, and business models. These networks can tremendously improve the quality of life by enabling various use cases that require high data-rate, low latency, and continuous connectivity for applications pertaining to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of Things (IoT). However, these applications need secure servicing as well as resource policing for effective network formations. There have been a lot of studies, which emphasized the security aspects of 5G networks while focusing only on the adaptability features of these networks. However, there is a gap in the literature which particularly needs to follow recent computing paradigms as alternative mechanisms for the enhancement of security. To cover this, a detailed description of the security for the 5G networks is presented in this article along with the discussions on the evolution of osmotic and catalytic computing-based security modules. The taxonomy on the basis of security requirements is presented, which also includes the comparison of the existing state-of-the-art solutions. This article also provides a security model, "CATMOSIS", which idealizes the incorporation of security features on the basis of catalytic and osmotic computing in the 5G networks. Finally, various security challenges and open issues are discussed to emphasize the works to follow in this direction of research.Comment: 34 pages, 7 tables, 7 figures, Published In 5G Enabled Secure Wireless Networks, pp. 69-102. Springer, Cham, 201

    Walsh–Hadamard transform based non–orthogonal multiple access (NOMA) and interference rejection combining in next-generation HetNets

    Get PDF
    In heterogeneous networks (HetNets), non-orthogonal multiple access (NOMA) has recently been proposed for hybrid-access small-cells, promising a manifold network capacity compared to OMA. One of the major issues with the installation of a hybrid-access mechanism in small-cells is the cross-tier interference (intercell interference (ICI)) caused by the macrocell users (MUs) that are unable to establish a connection to the small-cell base station (SBS). In this paper, a joint strategy is proposed for hybrid-access small-cells using the Walsh–Hadamard transform (WHT) with NOMA and interference rejection combining (IRC) to achieve high performance gains and mitigate intercell interference (ICI), respectively. WHT is applied mathematically as an orthogonal variable spreading factor (OVSF) to achieve diversity in communication systems. When applied jointly with NOMA, it ensures better performance gains than the conventional NOMA. It reduces the bit error rate (BER) and enhances subsequent throughput performance of the system. IRC is used at the receiver side for managing the cross-tier interference caused by MUs that are unable to connect to the small-cell base station (SBS) for hybrid-access. The work considers both ideal and nonideal successive interference cancellation (SIC) conditions for NOMA. Mathematical modeling is provided for the proposed joint strategy for HetNets and the results validate it in terms of BER and subsequent user throughput performance, compared to the conventional NOMA approach

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Robust Physical Layer Security for Power Domain Non-Orthogonal Multiple Access-Based HetNets and HUDNs: SIC Avoidance at Eavesdroppers

    No full text
    corecore