9,162 research outputs found

    Click-aware purchase prediction with push at the top

    Full text link
    Eliciting user preferences from purchase records for performing purchase prediction is challenging because negative feedback is not explicitly observed, and because treating all non-purchased items equally as negative feedback is unrealistic. Therefore, in this study, we present a framework that leverages the past click records of users to compensate for the missing user-item interactions of purchase records, i.e., non-purchased items. We begin by formulating various model assumptions, each one assuming a different order of user preferences among purchased, clicked-but-not-purchased, and non-clicked items, to study the usefulness of leveraging click records. We implement the model assumptions using the Bayesian personalized ranking model, which maximizes the area under the curve for bipartite ranking. However, we argue that using click records for bipartite ranking needs a meticulously designed model because of the relative unreliableness of click records compared with that of purchase records. Therefore, we ultimately propose a novel learning-to-rank method, called P3Stop, for performing purchase prediction. The proposed model is customized to be robust to relatively unreliable click records by particularly focusing on the accuracy of top-ranked items. Experimental results on two real-world e-commerce datasets demonstrate that P3STop considerably outperforms the state-of-the-art implicit-feedback-based recommendation methods, especially for top-ranked items.Comment: For the final published journal version, see https://doi.org/10.1016/j.ins.2020.02.06

    Adversarial Training Towards Robust Multimedia Recommender System

    Full text link
    With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.Comment: TKD

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Controlling Fairness and Bias in Dynamic Learning-to-Rank

    Full text link
    Rankings are the primary interface through which many online platforms match users to items (e.g. news, products, music, video). In these two-sided markets, not only the users draw utility from the rankings, but the rankings also determine the utility (e.g. exposure, revenue) for the item providers (e.g. publishers, sellers, artists, studios). It has already been noted that myopically optimizing utility to the users, as done by virtually all learning-to-rank algorithms, can be unfair to the item providers. We, therefore, present a learning-to-rank approach for explicitly enforcing merit-based fairness guarantees to groups of items (e.g. articles by the same publisher, tracks by the same artist). In particular, we propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data. The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility, dynamically adapting both as more data becomes available. In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust.Comment: First two authors contributed equally. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval 202

    Adversarial Sampling and Training for Semi-Supervised Information Retrieval

    Full text link
    Ad-hoc retrieval models with implicit feedback often have problems, e.g., the imbalanced classes in the data set. Too few clicked documents may hurt generalization ability of the models, whereas too many non-clicked documents may harm effectiveness of the models and efficiency of training. In addition, recent neural network-based models are vulnerable to adversarial examples due to the linear nature in them. To solve the problems at the same time, we propose an adversarial sampling and training framework to learn ad-hoc retrieval models with implicit feedback. Our key idea is (i) to augment clicked examples by adversarial training for better generalization and (ii) to obtain very informational non-clicked examples by adversarial sampling and training. Experiments are performed on benchmark data sets for common ad-hoc retrieval tasks such as Web search, item recommendation, and question answering. Experimental results indicate that the proposed approaches significantly outperform strong baselines especially for high-ranked documents, and they outperform IRGAN in NDCG@5 using only 5% of labeled data for the Web search task.Comment: Published in WWW 201
    corecore