88,471 research outputs found

    A new 2D static hand gesture colour image dataset for ASL gestures

    Get PDF
    It usually takes a fusion of image processing and machine learning algorithms in order to build a fully-functioning computer vision system for hand gesture recognition. Fortunately, the complexity of developing such a system could be alleviated by treating the system as a collection of multiple sub-systems working together, in such a way that they can be dealt with in isolation. Machine learning need to feed on thousands of exemplars (e.g. images, features) to automatically establish some recognisable patterns for all possible classes (e.g. hand gestures) that applies to the problem domain. A good number of exemplars helps, but it is also important to note that the efficacy of these exemplars depends on the variability of illumination conditions, hand postures, angles of rotation, scaling and on the number of volunteers from whom the hand gesture images were taken. These exemplars are usually subjected to image processing first, to reduce the presence of noise and extract the important features from the images. These features serve as inputs to the machine learning system. Different sub-systems are integrated together to form a complete computer vision system for gesture recognition. The main contribution of this work is on the production of the exemplars. We discuss how a dataset of standard American Sign Language (ASL) hand gestures containing 2425 images from 5 individuals, with variations in lighting conditions and hand postures is generated with the aid of image processing techniques. A minor contribution is given in the form of a specific feature extraction method called moment invariants, for which the computation method and the values are furnished with the dataset

    Continuous Action Recognition Based on Sequence Alignment

    Get PDF
    Continuous action recognition is more challenging than isolated recognition because classification and segmentation must be simultaneously carried out. We build on the well known dynamic time warping (DTW) framework and devise a novel visual alignment technique, namely dynamic frame warping (DFW), which performs isolated recognition based on per-frame representation of videos, and on aligning a test sequence with a model sequence. Moreover, we propose two extensions which enable to perform recognition concomitant with segmentation, namely one-pass DFW and two-pass DFW. These two methods have their roots in the domain of continuous recognition of speech and, to the best of our knowledge, their extension to continuous visual action recognition has been overlooked. We test and illustrate the proposed techniques with a recently released dataset (RAVEL) and with two public-domain datasets widely used in action recognition (Hollywood-1 and Hollywood-2). We also compare the performances of the proposed isolated and continuous recognition algorithms with several recently published methods

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Weakly-supervised Visual Grounding of Phrases with Linguistic Structures

    Full text link
    We propose a weakly-supervised approach that takes image-sentence pairs as input and learns to visually ground (i.e., localize) arbitrary linguistic phrases, in the form of spatial attention masks. Specifically, the model is trained with images and their associated image-level captions, without any explicit region-to-phrase correspondence annotations. To this end, we introduce an end-to-end model which learns visual groundings of phrases with two types of carefully designed loss functions. In addition to the standard discriminative loss, which enforces that attended image regions and phrases are consistently encoded, we propose a novel structural loss which makes use of the parse tree structures induced by the sentences. In particular, we ensure complementarity among the attention masks that correspond to sibling noun phrases, and compositionality of attention masks among the children and parent phrases, as defined by the sentence parse tree. We validate the effectiveness of our approach on the Microsoft COCO and Visual Genome datasets.Comment: CVPR 201
    • …
    corecore