860 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Performance analysis of a PID fractional order control in a differential mobile robot

    Full text link
    [EN] This work deals with the tracking trajectory problem for a differential-drive mobile robot taking into account a dynamic extension from the kinematic model and, controlling a front point located at a certain distance perpendicular to the mid-axis of the wheels. Two controls are proposed, a PID fractional order controller (PIδDµ) and a PD fractional order controller (PDµ), both based on the tracking errors. The proposed controllers are obtained by means of the input-output linearization technique. On the other hand, the controller fractional terms are based on the Caputo’s operator. Numerical simulations with different fractional orders are presented and compared with the integer order PID controller, showing the variations that occurred when changing only the controller order.[ES] Este trabajo aborda el problema de seguimiento de trayectorias de un robot móvil tipo diferencial considerando una extensión dinámica del modelo cinemático y, controlando un punto frontal situado a una cierta distancia perpendicular al eje medio de las ruedas. Se proponen dos tipos de controladores, un controlador PID de orden fraccionario (PIdeltaDmu) y un controlador PD fraccionario (PDmu), ambos basados en errores de seguimiento. Los controladores propuestos se obtienen empleando la técnica de linealización entrada-salida. Por otra parte, los términos fraccionarios del controlador se basan en el operador de Caputo. Se presentan simulaciones numéricas con diferentes órdenes fraccionarios y se comparan con el controlador PID de orden entero, mostrando las variaciones ocurridas al cambiar únicamente el orden del controlador.División de Investigación y Posgrado (DINVP) de la Universidad IberoamericanaVázquez, U.; González-Sierra, J.; Fernández-Anaya, G.; Hernández-Martínez, EG. (2021). Análisis del desempeño de un control PID de orden fraccional en un robot móvil diferencial. Revista Iberoamericana de Automática e Informática industrial. 19(1):74-83. https://doi.org/10.4995/riai.2021.15036OJS7483191Al-Mayyahi, A., Wang, W., Birch, P., 2016. Design of fractional-order controller for trajectory tracking control of a non-holonomic autonomous ground vehicle. Journal of Control, Automation and Electrical Systems 27 (1), 29-42. https://doi.org/10.1007/s40313-015-0214-2Betourne, A., Campion, G., 1996. Dynamic modelling and control design of a class of omnidirectional mobile robots. In Proceedings of IEEE International Conference on Robotics and Automation 3, 2810-2815.Buslowicz, M., 2012. Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders. Bulletin of the Polish Academy of Sciences. Technical Sciences 60 (2), 279-284. https://doi.org/10.2478/v10175-012-0037-2Buslowicz, M., 2013. Frequency domain method for stability analysis of linear continuous-time state-space systems with double fractional orders. In Advances in the Theory and Applications of Non-integer Order Systems, Springer, Heidelberg, 31-39. https://doi.org/10.1007/978-3-319-00933-9_3Campion, G., Bastin, G., Dandrea-Novel, B., 1996. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE transactions on robotics and automation 12 (1), 47-62. https://doi.org/10.1109/70.481750Contreras, J., Herrera, D., Toibero, J., Carelli, R., 2017. Controllers design for differential drive mobile robots based on extended kinematic modeling. In 2017 European Conference on Mobile Robots, 1-6.Fierro, R., Lewis, F., 1998. Control of a nonholonomic mobile robot using neural networks. IEEE transactions on neural networks 9 (4), 589-600. https://doi.org/10.1109/72.701173Kanjanawanishkul, K., Zell, A., 2009. Path following for an omnidirectional mobile robot based on model predictive control. In 2009 IEEE International Conference on Robotics and Automation, 3341-3346. https://doi.org/10.1109/ROBOT.2009.5152217Khalil, H., Grizzle, J., 2002. Nonlinear systems. Upper Saddle River, NJ: Prentice hall 3.Martínez, E., Ríos, H., Mera, M., Gonzalez-Sierra, J., 2019. A robust tracking control for unicycle mobile robots: An attractive ellipsoid approach. In 2019 IEEE 58th Conference on Decision and Control (CDC), 5799-5804. https://doi.org/10.1109/CDC40024.2019.9029954Matignon, D., 1996. Stability results for fractional differential equations with applications to control processing. In IMACS Multiconference on Computational engineering in systems applications 2 (1), 963-968.Matignon, D., 1998. Stability properties for generalized fractional differential systems. In ESAIM: Proceedings 5, 145-158. https://doi.org/10.1051/proc:1998004Miller, K., Ross, B., 1993. An introduction to the fractional calculus and fractional differential equations.Orman, K., Basci, A., Derdiyok, A., 2016. Speed and direction angle control of four wheel drive skid-steered mobile robot by using fractional order pi controller. Elektronika ir Elektrotechnika 22 (5), 14-19. https://doi.org/10.5755/j01.eie.22.5.16337Ovalle, L., Ríos, H., Llama, M., Dzul, V. S. A., 2019. Omnidirectional mobile robot robust tracking: Sliding-mode output-based control approaches. Control Engineering Practice 85, 50-58. https://doi.org/10.1016/j.conengprac.2019.01.002Park, B., Yoo, S., Park, J., Choi, Y., 2008. Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Transactions on Control Systems Technology 17 (1), 207-214. https://doi.org/10.1109/TCST.2008.922584Petrás, I., 2008. Stability of fractional-order systems with rational orders. Fractional Calculus and Applied Sciences 10.Petrás, I., 2011. Fractional-order nonlinear systems: Modeling, analysis and simulation. Nonlinear Physical Science Book Series, Springer. https://doi.org/10.1007/978-3-642-18101-6Petrás, I., Dorcák, L., 1999. The frequency method for stability investigation of fractional control systems. J. of SACTA 2 (1-2), 75-85.Podlubny, I., 1998. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, 340.Radwan, A., Soliman, A., Elwakil, A., Sedeek, A., 2009. On the stability of linear systems with fractional-order elements. Chaos, Solitons & Fractals 40 (5), 2317-2328. https://doi.org/10.1016/j.chaos.2007.10.033Rasheed, L., Al-Araji, A., 2017. A cognitive nonlinear fractional order pid neural controller design for wheeled mobile robot based on bacterial foraging optimization algorithm. Engineering and Technology Journal 35 (3), 289-300.Rodriguez-Cortes, H., Aranda-Bricaire, E., 2007. Observer based trajectory tracking for a wheeled mobile robot. In 2007 American Conference Control, 991-996. https://doi.org/10.1109/ACC.2007.4282706Rojas-Moreno, A., Perez-Valenzuela, G., 2017. Fractional order tracking control of a wheeled mobile robot. IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing, 1-4. https://doi.org/10.1109/INTERCON.2017.8079683Sabatier, J., Moze, M., Farges, C., 2010. Lmi stability conditions for fractional order systems. Computers & Mathematics with Applications 59 (5), 1594-1609. https://doi.org/10.1016/j.camwa.2009.08.003Siegwart, R., Nourbakhsh, I., Scaramuzza, D., 2011. Introduction to autonomous mobile robots. MIT press.Sira-Ramírez, H., López-Uribe, C., Velasco-Villa, M., 2013. Linear observer-based active disturbance rejection control of the omnidirectional mobile robot. Asian Journal of Control 15 (1), 51-63. https://doi.org/10.1002/asjc.523Tawfik, M., Abdulwahb, E., Swadi, S., 2014. Trajectory tracking control for a wheeled mobile robot using fractional order piadb controller. Al-Khwarizmi Engineering Journal 10 (3), 39-52.Tepljakov, A., 2017. Fractional-order modeling and control of dynamic systems; fomcon: Fractional-order modeling and control toolbox. Springer Theses, 107--129. https://doi.org/10.1007/978-3-319-52950-9Tepljakov, A., Petlenkov, E., Belikov, J., Finajev, J., 2013. Fractional-order controller design and digital implementation using fomcon toolbox for matlab. IEEE Conference on Computer Aided Control System Design, 340--345. https://doi.org/10.1109/CACSD.2013.6663486Valerio, D., Costa, J. D., 2013. An introduction to fractional control. IET 91, 32-208.Vázquez, J., Velasco-Villa, M., 2008. Path-tracking dynamic model based control of an omnidirectional mobile robot. IFAC Proceedings Volumes 41 (2), 5365-5370. https://doi.org/10.3182/20080706-5-KR-1001.00904Yang, H., Fan, X., Shi, P., Hua, C., 2015. Nonlinear control for tracking and obstacle avoidance of a wheeled mobile robot with nonholonomic constraint. IEEE Transactions on Control Systems Technology 24 (2), 741-746. https://doi.org/10.1109/TCST.2015.2457877Zhang, L., Liu, L., Zhang, S., 2020. Design, implementation, and validation of robust fractional-order pd controller for wheeled mobile robot trajectory tracking. Complexity 2020, 1-12. https://doi.org/10.1155/2020/9523549Zhao, Y., Chen, N., Tai, Y., 2016. Trajectory tracking control of wheeled mobile robot based on fractional order backstepping. In 2016 Chinese Control and Decision Conference, 6730-6734. https://doi.org/10.1109/CCDC.2016.753220

    Design of fractional-order controller for trajectory tracking control of a non-holonomic autonomous ground vehicle

    Get PDF
    A robust control technique is proposed to address the problem of trajectory tracking of an autonomous ground vehicle (AGV). This technique utilizes a fractional-order proportional integral derivative (FOPID) controller to control a non-holonomic autonomous ground vehicle to track the behaviour of the predefined reference path. Two FOPID controllers are designed to control the AGV’s inputs. These inputs represent the torques that are used in order to manipulate the implemented model of the vehicle to obtain the actual path. The implemented model of the non-holonomic autonomous ground vehicle takes into consideration both of the kinematic and dynamic models. In additional, a particle swarm optimization (PSO) algorithm is used to optimize the FOPID controllers’ parameters. These optimal tuned parameters of FOPID controllers minimize the cost function used in the algorithm. The effectiveness and validation of the proposed method have been verified through different patterns of reference paths using MATLAB–Simulink software package. The stability of fractional-order system is analysed. Also, the robustness of the system is conducted by adding disturbances due to friction of wheels during the vehicle motion. The obtained results of FOPID controller show the advantage and the performance of the technique in terms of minimizing path tracking error and the complement of the path following

    Optimal Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PID Controller

    Get PDF
    يقدم هذا البحث, المتحكم التناسبي التكاملي التفاضلي الكسري الامثل اعتمادا على خوارزمية اسراب الطيور للسيطرة على تتبع المسار للانسان الالي ذو العجلات. حيث يتم تقليل مشكلة تتبع المسار مع إعطاء السرعة المرجعية المطلوبة للحصول على المسافة وانحراف زاوية يساوي الصفر، لتحقيق الهدف من تتبع المسار يتم استخدام اثنين من وحدات المتحكم التناسبي التكاملي التفاضلي الكسري للتحكم في السرعة والزاوية لتنفيذ سيطرة تتبع المسار.  تستخدم أساليب تخطيط وتتبع المسارات لإعطاء مسارات تتبع مختلفة. تم استخدام خوارزمية اسراب الطيور لإيجاد المعلمات المثلى لوحدات المتحكم التناسبي التكاملي التفاضلي الكسري. وتم محاكاة النماذج الحركية والحيوية للانسان الالي ذو العجلات لتتبع المسار المطلوب مع خوارزمية أسراب الطيور في برنامج المحاكاة  ماتلاب. وتبين نتائج المحاكاة أن  وحدات المتحكم التناسبي التكاملي التفاضلي الكسري الأمثل هي أكثر فعالية ولها أداء ديناميكي أفضل من الطرق التقليدية.This paper present an optimal Fractional Order PID (FOPID) controller based on Particle Swarm Optimization (PSO) for controlling the trajectory tracking of Wheeled Mobile Robot(WMR).The issue of trajectory tracking with given a desired reference velocity is minimized to get the distance and deviation angle equal to zero, to realize the objective of trajectory tracking a two FOPID controllers are used for velocity control and azimuth control to implement the trajectory tracking control. A path planning and path tracking methodologies are used to give different desired tracking trajectories.  PSO algorithm is using to find the optimal parameters of FOPID controllers. The kinematic and dynamic models of wheeled mobile robot for desired trajectory tracking with PSO algorithm are simulated in Simulink-Matlab. Simulation results show that the optimal FOPID controllers are more effective and has better dynamic performance than the conventional methods

    Dynamic Modeling and Torque Feedforward based Optimal Fuzzy PD control of a High-Speed Parallel Manipulator

    Get PDF
    Dynamic modeling and control of high-speed parallel manipulators are of importance due to their industrial applications deployed in production lines. However, there are still a number of open problems, such as the development of a precise dynamic model to be used in the model-based control design. This paper presents a four-limb parallel manipulator with Schönflies motion and its simplified dynamic modeling process. Then, in order to fix the issue that computed torque method control (CTC) will spend a lot of time to calculate dynamic parameters in real-time, offline torque feedforward-based PD (TFPD) control law is adopted in the control system. At the same time, fuzzy logic is also used to tune the gains of PD controller to adapt to the variation of external disturbance and compensate the un-modeled uncertainty. Additionally, bottom widths of membership functions of fuzzy controller are optimized by bat algorithm. Finally, three controllers of CTC, TFPD and bat algorithm-based torque feedforwad fuzzy PD controller (BA-TFFPD) are compared in trajectory tracking simulation. Fro the result, compared with TFPD and CTC, BA-TFFPD can lead faster transient response and lower tracking error, which prove the validity of BA-TFFPD

    Path tracking control of differential drive mobile robot based on chaotic-billiards optimization algorithm

    Get PDF
    Mobile robots are typically depending only on robot kinematics control. However, when high-speed motions and highly loaded transfer are considered, it is necessary to analyze dynamics of the robot to limit tracking error. The goal of this paper is to present a new algorithm, chaotic-billiards optimizer (C-BO) to optimize internal controller parameters of a differential-drive mobile robot (DDMR)-based dynamic model. The C-BO algorithm is notable for its ease of implementation, minimal number of design parameters, high convergence speed, and low computing burden. In addition, a comparison between the performance of C-BO and ant colony optimization (ACO) to determine the optimum controller coefficient that provides superior performance and convergence of the path tracking. The ISE criterion is selected as a fitness function in a simulation-based optimization strategy. For the point of accuracy, the velocity-based dynamic compensation controller was successfully integrated with the motion controller proposed in this study for the robot's kinematics. Control structure of the model was tested using MATLAB/Simulink. The results demonstrate that the suggested C-BO, with steady state error performance of 0.6 percent compared to ACO's 0.8 percent, is the optimum alternative for parameter optimizing the controller for precise path tracking. Also, it offers advantages of quick response, high tracking precision, and outstanding anti-interference capability

    Cognitive Vehicle Platooning in the Era of Automated Electric Transportation

    Get PDF
    Vehicle platooning is an important innovation in the automotive industry that aims at improving safety, mileage, efficiency, and the time needed to travel. This research focuses on the various aspects of vehicle platooning, one of the important aspects being analysis of different control strategies that lead to a stable and robust platoon. Safety of passengers being a very important consideration, the control design should be such that the controller remains robust under uncertain environments. As a part of the Department of Energy (DOE) project, this research also tries to show a demonstration of vehicle platooning using robots. In an automated highway scenario, a vehicle platoon can be thought of as a string of vehicles, following one another as a platoon. Being equipped by wireless communication capabilities, these vehicles communicate with one another to maintain their formation as a platoon, hence are cognitive. Autonomous capable vehicles in tightly spaced, computer-controlled platoons will lead to savings in energy due to reduced aerodynamic forces, as well as increased passenger comfort since there will be no sudden accelerations or decelerations. Impacts in the occurrence of collisions, if any, will be very low. The greatest benefit obtained is, however, an increase in highway capacity, along with reduction in traffic congestion, pollution, and energy consumption. Another aspect of this project is the automated electric transportation (AET). This aims at providing energy directly to vehicles from electric highways, thus reducing their energy consumption and CO2 emission. By eliminating the use of overhead wires, infrastructure can be upgraded by electrifying highways and providing energy on demand and in real time to moving vehicles via a wireless energy transfer phenomenon known as wireless inductive coupling. The work done in this research will help to gain an insight into vehicle platooning and the control system related to maintaining the vehicles in this formation
    corecore