456 research outputs found

    Guaranteed passive parameterized macromodeling by using Sylvester state-space realizations

    Get PDF
    A novel state-space realization for parameterized macromodeling is proposed in this paper. A judicious choice of the state-space realization is required in order to account for the assumed smoothness of the state-space matrices with respect to the design parameters. This technique is used in combination with suitable interpolation schemes to interpolate a set of state-space matrices, and hence the poles and residues indirectly, in order to build accurate parameterized macromodels. The key points of the novel state-space realizations are the choice of a proper pivot matrix and a well-conditioned solution of a Sylvester equation. Stability and passivity are guaranteed by construction over the design space of interest. Pertinent numerical examples validate the proposed Sylvester realization for parameterized macromodeling

    Auto-generation of passive scalable macromodels for microwave components using scattered sequential sampling

    Get PDF
    This paper presents a method for automatic construction of stable and passive scalable macromodels for parameterized frequency responses. The method requires very little prior knowledge to build the scalable macromodels thereby considerably reducing the burden on the designers. The proposed method uses an efficient scattered sequential sampling strategy with as few expensive simulations as possible to generate accurate macromodels for the system using state-of-the-art scalable macromodeling methods. The scalable macromodels can be used as a replacement model for the actual simulator in overall design processes. Pertinent numerical results validate the proposed sequential sampling strategy

    Guaranteed passive parameterized admittance-based macromodeling

    Get PDF
    We propose a novel parametric macromodeling technique for admittance and impedance input-output representations parameterized by design variables such as geometrical layout or substrate features. It is able to build accurate multivariate macromodels that are stable and passive in the entire design space. An efficient combination of rational identification and interpolation schemes based on a class of positive interpolation operators, ensures overall stability and passivity of the parametric macromodel. Numerical examples validate the proposed approach on practical application cases

    Sensitivity analysis using data-driven parametric macromodels

    Get PDF
    An accurate parametric macromodeling method which builds the parameterized frequency behavior of systems from frequency data samples is presented. The method aims to calculate parametric sensitivity responses of the model with respect to design parameters over the entire design space. A judiciously chosen interpolation scheme is used to parameterize state-space matrices such that parametric sensitivities can be computed analytically. The modeling capability of the proposed method is validated by a pertinent numerical example

    A Perturbation Scheme for Passivity Verification and Enforcement of Parameterized Macromodels

    Get PDF
    This paper presents an algorithm for checking and enforcing passivity of behavioral reduced-order macromodels of LTI systems, whose frequency-domain (scattering) responses depend on external parameters. Such models, which are typically extracted from sampled input-output responses obtained from numerical solution of first-principle physical models, usually expressed as Partial Differential Equations, prove extremely useful in design flows, since they allow optimization, what-if or sensitivity analyses, and design centering. Starting from an implicit parameterization of both poles and residues of the model, as resulting from well-known model identification schemes based on the Generalized Sanathanan-Koerner iteration, we construct a parameter-dependent Skew-Hamiltonian/Hamiltonian matrix pencil. The iterative extraction of purely imaginary eigenvalues ot fhe pencil, combined with an adaptive sampling scheme in the parameter space, is able to identify all regions in the frequency-parameter plane where local passivity violations occur. Then, a singular value perturbation scheme is setup to iteratively correct the model coefficients, until all local passivity violations are eliminated. The final result is a corrected model, which is uniformly passive throughout the parameter range. Several numerical examples denomstrate the effectiveness of the proposed approach.Comment: Submitted to the IEEE Transactions on Components, Packaging and Manufacturing Technology on 13-Apr-201

    Compact and passive parametric macromodeling using reference macromodels and positive interpolation operators

    Get PDF
    We present an enhanced parametric macromodeling method that is able to generate compact and passive models over the entire design space of interest. It starts from a discrete set of data samples of the input-output system behavior (e.g. admittance, impedance, and scattering parameters), which depend on multiple design variables such as layout and substrate parameters. The proposed approach generates accurate parametric macromodels whose size is not affected by the number of design parameters in addition to frequency. Stability and passivity are preserved over the design space of interest. Pertinent numerical results validate the proposed parametric macromodeling methods
    • …
    corecore