441 research outputs found

    An integrated architecture for shallow and deep processing

    Get PDF
    We present an architecture for the integration of shallow and deep NLP components which is aimed at flexible combination of different language technologies for a range of practical current and future applications. In particular, we describe the integration of a high-level HPSG parsing system with different high-performance shallow components, ranging from named entity recognition to chunk parsing and shallow clause recognition. The NLP components enrich a representation of natural language text with layers of new XML meta-information using a single shared data structure, called the text chart. We describe details of the integration methods, and show how information extraction and language checking applications for realworld German text benefit from a deep grammatical analysis

    The DeepThought Core Architecture Framework

    Get PDF
    The research performed in the DeepThought project aims at demonstrating the potential of deep linguistic processing if combined with shallow methods for robustness. Classical information retrieval is extended by high precision concept indexing and relation detection. On the basis of this approach, the feasibility of three ambitious applications will be demonstrated, namely: precise information extraction for business intelligence; email response management for customer relationship management; creativity support for document production and collective brainstorming. Common to these applications, and the basis for their development is the XML-based, RMRS-enabled core architecture framework that will be described in detail in this paper. The framework is not limited to the applications envisaged in the DeepThought project, but can also be employed e.g. to generate and make use of XML standoff annotation of documents and linguistic corpora, and in general for a wide range of NLP-based applications and research purposes

    Treebank-based multilingual unification-grammar development

    Get PDF
    Broad-coverage, deep unification grammar development is time-consuming and costly. This problem can be exacerbated in multilingual grammar development scenarios. Recently (Cahill et al., 2002) presented a treebank-based methodology to semi-automatically create broadcoverage, deep, unification grammar resources for English. In this paper we present a project which adapts this model to a multilingual grammar development scenario to obtain robust, wide-coverage, probabilistic Lexical-Functional Grammars (LFGs) for English and German via automatic f-structure annotation algorithms based on the Penn-II and TIGER treebanks. We outline our method used to extract a probabilistic LFG from the TIGER treebank and report on the quality of the f-structures produced. We achieve an f-score of 66.23 on the evaluation of 100 random sentences against a manually constructed gold standard

    Wide-coverage deep statistical parsing using automatic dependency structure annotation

    Get PDF
    A number of researchers (Lin 1995; Carroll, Briscoe, and Sanfilippo 1998; Carroll et al. 2002; Clark and Hockenmaier 2002; King et al. 2003; Preiss 2003; Kaplan et al. 2004;Miyao and Tsujii 2004) have convincingly argued for the use of dependency (rather than CFG-tree) representations for parser evaluation. Preiss (2003) and Kaplan et al. (2004) conducted a number of experiments comparing “deep” hand-crafted wide-coverage with “shallow” treebank- and machine-learning based parsers at the level of dependencies, using simple and automatic methods to convert tree output generated by the shallow parsers into dependencies. In this article, we revisit the experiments in Preiss (2003) and Kaplan et al. (2004), this time using the sophisticated automatic LFG f-structure annotation methodologies of Cahill et al. (2002b, 2004) and Burke (2006), with surprising results. We compare various PCFG and history-based parsers (based on Collins, 1999; Charniak, 2000; Bikel, 2002) to find a baseline parsing system that fits best into our automatic dependency structure annotation technique. This combined system of syntactic parser and dependency structure annotation is compared to two hand-crafted, deep constraint-based parsers (Carroll and Briscoe 2002; Riezler et al. 2002). We evaluate using dependency-based gold standards (DCU 105, PARC 700, CBS 500 and dependencies for WSJ Section 22) and use the Approximate Randomization Test (Noreen 1989) to test the statistical significance of the results. Our experiments show that machine-learning-based shallow grammars augmented with sophisticated automatic dependency annotation technology outperform hand-crafted, deep, widecoverage constraint grammars. Currently our best system achieves an f-score of 82.73% against the PARC 700 Dependency Bank (King et al. 2003), a statistically significant improvement of 2.18%over the most recent results of 80.55%for the hand-crafted LFG grammar and XLE parsing system of Riezler et al. (2002), and an f-score of 80.23% against the CBS 500 Dependency Bank (Carroll, Briscoe, and Sanfilippo 1998), a statistically significant 3.66% improvement over the 76.57% achieved by the hand-crafted RASP grammar and parsing system of Carroll and Briscoe (2002)
    corecore