8,397 research outputs found

    A Novel Framework for Highlight Reflectance Transformation Imaging

    Get PDF
    We propose a novel pipeline and related software tools for processing the multi-light image collections (MLICs) acquired in different application contexts to obtain shape and appearance information of captured surfaces, as well as to derive compact relightable representations of them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI) framework, which is widely used in the Cultural Heritage domain. We support, in particular, perspective camera modeling, per-pixel interpolated light direction estimation, as well as light normalization correcting vignetting and uneven non-directional illumination. Furthermore, we propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addition to support easy processing and encoding of pixel data, implement a variety of visualizations, as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential benefits of the proposed tools for end-user applications.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091DSURF project (PRIN 2015) funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    Feature extraction and signal processing for nylon DNA microarrays

    Get PDF
    BACKGROUND: High-density DNA microarrays require automatic feature extraction methodologies and softwares. These can be a potential source of non-reproducibility of gene expression measurements. Variation in feature location or in signal integration methodology may be a significant contribution to the observed variance in gene expression levels. RESULTS: We explore sources of variability in feature extraction from DNA microarrays on Nylon membrane with radioactive detection. We introduce a mathematical model of the signal emission and derive methods for correcting biases such as overshining, saturation or variation in probe amount. We also provide a quality metric which can be used qualitatively to flag weak or untrusted signals or quantitatively to modulate the weight of each experiment or gene in higher level analyses (clustering or discriminant analysis). CONCLUSIONS: Our novel feature extraction methodology, based on a mathematical model of the radioactive emission, reduces variability due to saturation, neighbourhood effects and variable probe amount. Furthermore, we provide a fully automatic feature extraction software, BZScan, which implements the algorithms described in this paper

    VERA monitoring of the radio jet 3C 84 during 2007--2013: detection of non-linear motion

    Get PDF
    We present a kinematic study of the subparsec-scale radio jet of the radio galaxy 3C 84/NGC 1275 with the VLBI Exploration of Radio Astrometry (VERA) array at 22 GHz for 80 epochs from 2007 October to 2013 December. The averaged radial velocity of the bright component "C3" with reference to the radio core is found to be 0.27pm0.02c0.27 pm 0.02c between 2007 October and 2013 December. This constant velocity of C3 is naturally explained by the advancing motion of the head of the mini-radio lobe. We also find a non-linear component in the motion of C3 with respect to the radio core. We briefly discuss possible origins of this non-linear motion.Comment: 11 pages, 7 figures, 8 tables (table 1 - 5 are supplementaries), accepted for publication on PAS

    Fundamentals and applications of spatial dissipative solitons in photonic devices : [Chapter 6]

    Get PDF
    We review the properties of optical spatial dissipative solitons (SDS). These are stable, self‐localized optical excitations sitting on a uniform, or quasi‐uniform, background in a dissipative environment like a nonlinear optical cavity. Indeed, in optics they are often termed “cavity solitons.” We discuss their dynamics and interactions in both ideal and imperfect systems, making comparison with experiments. SDS in lasers offer important advantages for applications. We review candidate schemes and the tremendous recent progress in semiconductor‐based cavity soliton lasers. We examine SDS in periodic structures, and we show how SDS can be quantitatively related to the locking of fronts. We conclude with an assessment of potential applications of SDS in photonics, arguing that best use of their particular features is made by exploiting their mobility, for example in all‐optical delay lines

    Advanced spot quality analysis in two-colour microarray experiments

    Get PDF
    Background: Image analysis of microarrays and, in particular, spot quantification and spot quality control, is one of the most important steps in statistical analysis of microarray data. Recent methods of spot quality control are still in early age of development, often leading to underestimation of true positive microarray features and, consequently, to loss of important biological information. Therefore, improving and standardizing the statistical approaches of spot quality control are essential to facilitate the overall analysis of microarray data and subsequent extraction of biological information. Findings: We evaluated the performance of two image analysis packages MAIA and GenePix (GP) using two complementary experimental approaches with a focus on the statistical analysis of spot quality factors. First, we developed control microarrays with a priori known fluorescence ratios to verify the accuracy and precision of the ratio estimation of signal intensities. Next, we developed advanced semi-automatic protocols of spot quality evaluation in MAIA and GP and compared their performance with available facilities of spot quantitative filtering in GP. We evaluated these algorithms for standardised spot quality analysis in a whole-genome microarray experiment assessing well-characterised transcriptional modifications induced by the transcription regulator SNAI1. Using a set of RT-PCR or qRT-PCR validated microarray data, we found that the semi-automatic protocol of spot quality control we developed with MAIA allowed recovering approximately 13% more spots and 38% more differentially expressed genes (at FDR = 5%) than GP with default spot filtering conditions. Conclusion: Careful control of spot quality characteristics with advanced spot quality evaluation can significantly increase the amount of confident and accurate data resulting in more meaningful biological conclusions. © 2008 Friederich et al; licensee BioMed Central Ltd

    Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment

    Get PDF
    BACKGROUND: To cancel experimental variations, microarray data must be normalized prior to analysis. Where an appropriate model for statistical data distribution is available, a parametric method can normalize a group of data sets that have common distributions. Although such models have been proposed for microarray data, they have not always fit the distribution of real data and thus have been inappropriate for normalization. Consequently, microarray data in most cases have been normalized with non-parametric methods that adjust data in a pair-wise manner. However, data analysis and the integration of resultant knowledge among experiments have been difficult, since such normalization concepts lack a universal standard. RESULTS: A three-parameter lognormal distribution model was tested on over 300 sets of microarray data. The model treats the hybridization background, which is difficult to identify from images of hybridization, as one of the parameters. A rigorous coincidence of the model to data sets was found, proving the model's appropriateness for microarray data. In fact, a closer fitting to Northern analysis was obtained. The model showed inconsistency only at very strong or weak data intensities. Measurement of z-scores as well as calculated ratios was reproducible only among data in the model-consistent intensity range; also, the ratios were independent of signal intensity at the corresponding range. CONCLUSION: The model could provide a universal standard for data, simplifying data analysis and knowledge integration. It was deduced that the ranges of inconsistency were caused by experimental errors or additive noise in the data; therefore, excluding the data corresponding to those marginal ranges will prevent misleading analytical conclusions

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution

    Automatic gridding of DNA microarray images.

    Get PDF
    Microarray (DNA chip) technology is having a significant impact on genomic studies. Many fields, including drug discovery and toxicological research, will certainly benefit from the use of DNA microarray technology. Microarray analysis is replacing traditional biological assays based on gels, filters and purification columns with small glass chips containing tens of thousands of DNA and protein sequences in agricultural and medical sciences. Microarray functions like biological microprocessors, enabling the rapid and quantitative analysis of gene expression patterns, patient genotypes, drug mechanisms and disease onset and progression on a genomic scale. Image analysis and statistical analysis are two important aspects of microarray technology. Gridding is necessary to accurately identify the location of each of the spots while extracting spot intensities from the microarray images and automating this procedure permits high-throughput analysis. Due to the deficiencies of the equipment that is used to print the arrays, rotations, misalignments, high contaminations with noise and artifacts, solving the grid segmentation problem in an automatic system is not trivial. The existing techniques to solve the automatic grid segmentation problem cover only limited aspect of this challenging problem and requires the user to specify or make assumptions about the spotsize, rows and columns in the grid and boundary conditions. An automatic gridding and spot quantification technique is proposed, which takes a matrix of pixels or a microarray image as input and makes no assumptions about the spotsize, rows and columns in the grid and is found to effective on datasets from GEO, Stanford genomic laboratories and on images obtained from private repositories. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .V53. Source: Masters Abstracts International, Volume: 43-03, page: 0891. Adviser: Luis Rueda. Thesis (M.Sc.)--University of Windsor (Canada), 2004
    corecore