1,348 research outputs found

    GyroFlow+: Gyroscope-Guided Unsupervised Deep Homography and Optical Flow Learning

    Full text link
    Existing homography and optical flow methods are erroneous in challenging scenes, such as fog, rain, night, and snow because the basic assumptions such as brightness and gradient constancy are broken. To address this issue, we present an unsupervised learning approach that fuses gyroscope into homography and optical flow learning. Specifically, we first convert gyroscope readings into motion fields named gyro field. Second, we design a self-guided fusion module (SGF) to fuse the background motion extracted from the gyro field with the optical flow and guide the network to focus on motion details. Meanwhile, we propose a homography decoder module (HD) to combine gyro field and intermediate results of SGF to produce the homography. To the best of our knowledge, this is the first deep learning framework that fuses gyroscope data and image content for both deep homography and optical flow learning. To validate our method, we propose a new dataset that covers regular and challenging scenes. Experiments show that our method outperforms the state-of-the-art methods in both regular and challenging scenes.Comment: 12 pages. arXiv admin note: substantial text overlap with arXiv:2103.1372

    GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

    Full text link
    Existing optical flow methods are erroneous in challenging scenes, such as fog, rain, and night because the basic optical flow assumptions such as brightness and gradient constancy are broken. To address this problem, we present an unsupervised learning approach that fuses gyroscope into optical flow learning. Specifically, we first convert gyroscope readings into motion fields named gyro field. Then, we design a self-guided fusion module to fuse the background motion extracted from the gyro field with the optical flow and guide the network to focus on motion details. To the best of our knowledge, this is the first deep learning-based framework that fuses gyroscope data and image content for optical flow learning. To validate our method, we propose a new dataset that covers regular and challenging scenes. Experiments show that our method outperforms the state-of-art methods in both regular and challenging scenes

    Unsupervised Hierarchical Domain Adaptation for Adverse Weather Optical Flow

    Full text link
    Optical flow estimation has made great progress, but usually suffers from degradation under adverse weather. Although semi/full-supervised methods have made good attempts, the domain shift between the synthetic and real adverse weather images would deteriorate their performance. To alleviate this issue, our start point is to unsupervisedly transfer the knowledge from source clean domain to target degraded domain. Our key insight is that adverse weather does not change the intrinsic optical flow of the scene, but causes a significant difference for the warp error between clean and degraded images. In this work, we propose the first unsupervised framework for adverse weather optical flow via hierarchical motion-boundary adaptation. Specifically, we first employ image translation to construct the transformation relationship between clean and degraded domains. In motion adaptation, we utilize the flow consistency knowledge to align the cross-domain optical flows into a motion-invariance common space, where the optical flow from clean weather is used as the guidance-knowledge to obtain a preliminary optical flow for adverse weather. Furthermore, we leverage the warp error inconsistency which measures the motion misalignment of the boundary between the clean and degraded domains, and propose a joint intra- and inter-scene boundary contrastive adaptation to refine the motion boundary. The hierarchical motion and boundary adaptation jointly promotes optical flow in a unified framework. Extensive quantitative and qualitative experiments have been performed to verify the superiority of the proposed method

    FCN-rLSTM: Deep Spatio-Temporal Neural Networks for Vehicle Counting in City Cameras

    Full text link
    In this paper, we develop deep spatio-temporal neural networks to sequentially count vehicles from low quality videos captured by city cameras (citycams). Citycam videos have low resolution, low frame rate, high occlusion and large perspective, making most existing methods lose their efficacy. To overcome limitations of existing methods and incorporate the temporal information of traffic video, we design a novel FCN-rLSTM network to jointly estimate vehicle density and vehicle count by connecting fully convolutional neural networks (FCN) with long short term memory networks (LSTM) in a residual learning fashion. Such design leverages the strengths of FCN for pixel-level prediction and the strengths of LSTM for learning complex temporal dynamics. The residual learning connection reformulates the vehicle count regression as learning residual functions with reference to the sum of densities in each frame, which significantly accelerates the training of networks. To preserve feature map resolution, we propose a Hyper-Atrous combination to integrate atrous convolution in FCN and combine feature maps of different convolution layers. FCN-rLSTM enables refined feature representation and a novel end-to-end trainable mapping from pixels to vehicle count. We extensively evaluated the proposed method on different counting tasks with three datasets, with experimental results demonstrating their effectiveness and robustness. In particular, FCN-rLSTM reduces the mean absolute error (MAE) from 5.31 to 4.21 on TRANCOS, and reduces the MAE from 2.74 to 1.53 on WebCamT. Training process is accelerated by 5 times on average.Comment: Accepted by International Conference on Computer Vision (ICCV), 201

    ASF-Net: Robust Video Deraining via Temporal Alignment and Online Adaptive Learning

    Full text link
    In recent times, learning-based methods for video deraining have demonstrated commendable results. However, there are two critical challenges that these methods are yet to address: exploiting temporal correlations among adjacent frames and ensuring adaptability to unknown real-world scenarios. To overcome these challenges, we explore video deraining from a paradigm design perspective to learning strategy construction. Specifically, we propose a new computational paradigm, Alignment-Shift-Fusion Network (ASF-Net), which incorporates a temporal shift module. This module is novel to this field and provides deeper exploration of temporal information by facilitating the exchange of channel-level information within the feature space. To fully discharge the model's characterization capability, we further construct a LArge-scale RAiny video dataset (LARA) which also supports the development of this community. On the basis of the newly-constructed dataset, we explore the parameters learning process by developing an innovative re-degraded learning strategy. This strategy bridges the gap between synthetic and real-world scenes, resulting in stronger scene adaptability. Our proposed approach exhibits superior performance in three benchmarks and compelling visual quality in real-world scenarios, underscoring its efficacy. The code is available at https://github.com/vis-opt-group/ASF-Net

    {SHIFT}: {A} Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation

    Get PDF
    Adapting to a continuously evolving environment is a safety-critical challenge inevitably faced by all autonomous-driving systems. Existing image- and video-based driving datasets, however, fall short of capturing the mutable nature of the real world. In this paper, we introduce the largest multi-task synthetic dataset for autonomous driving, SHIFT. It presents discrete and continuous shifts in cloudiness, rain and fog intensity, time of day, and vehicle and pedestrian density. Featuring a comprehensive sensor suite and annotations for several mainstream perception tasks, SHIFT allows to investigate how a perception systems' performance degrades at increasing levels of domain shift, fostering the development of continuous adaptation strategies to mitigate this problem and assessing the robustness and generality of a model. Our dataset and benchmark toolkit are publicly available at www.vis.xyz/shift
    • ā€¦
    corecore