722 research outputs found

    Robust Observer Design for Takagi-Sugeno Fuzzy Systems with Mixed Neutral and Discrete Delays and Unknown Inputs

    Get PDF
    A robust observer design is proposed for Takagi-Sugeno fuzzy neutral models with unknown inputs. The model consists of a mixed neutral and discrete delay, and the disturbances are imposed on both state and output signals. Delay-dependent sufficient conditions for the design of an unknown input T-S observer with time delays are given in terms of linear matrix inequalities. Some relaxations are introduced by using intermediate variables. A numerical example is given to illustrate the effectiveness of the given results

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Zonotopic fault detection observer design for Takagi–Sugeno fuzzy systems

    Get PDF
    This paper considers zonotopic fault detection observer design in the finite-frequency domain for discrete-time Takagi–Sugeno fuzzy systems with unknown but bounded disturbances and measurement noise. We present a novel fault detection observer structure, which is more general than the commonly used Luenberger form. To make the generated residual sensitive to faults and robust against disturbances, we develop a finite-frequency fault detection observer based on generalised Kalman–Yakubovich–Popov lemma and P-radius criterion. The design conditions are expressed in terms of linear matrix inequalities. The major merit of the proposed method is that residual evaluation can be easily implemented via zonotopic approach. Numerical examples are conducted to demonstrate the proposed methodPeer ReviewedPostprint (author's final draft

    Robust fault estimation for stochastic Takagi-Sugeno fuzzy systems

    Get PDF
    Nowadays, industrial plants are calling for high-performance fault diagnosis techniques to meet stringent requirements on system availability and safety in the event of component failures. This paper deals with robust fault estimation problems for stochastic nonlinear systems subject to faults and unknown inputs relying on Takagi-Sugeno fuzzy models. Augmented approach jointly with unknown input observers for stochastic Takagi-Sugeno models is exploited here, which allows one to estimate both considered faults and full system states robustly. The considered unknown inputs can be either completely decoupled or partially decoupled by observers. For the un-decoupled part of unknown inputs, which still influence error dynamics, stochastic input-to-state stability properties are applied to take nonzero inputs into account and sufficient conditions are achieved to guarantee bounded estimation errors under bounded unknown inputs. Linear matrix inequalities are employed to compute gain matrices of the observer, leading to stochastic input-to-state-stable error dynamics and optimization of the estimation performances against un-decoupled unknown inputs. Finally, simulation on wind turbine benchmark model is applied to validate the performances of the suggested fault reconstruction methodologies

    Robust unknown input observer for state and fault estimation in discrete-time Takagi-Sugeno systems

    Get PDF
    In this paper, a robust unknown input observer (UIO) for the joint state and fault estimation in discrete-time Takagi-Sugeno (TS) systems is presented. The proposed robust UIO, by applying the H-infinity framework, leads to a less restrictive design procedure with respect to recent results found in the literature. The resulting design procedure aims at achieving a prescribed attenuation level with respect to the exogenous disturbances, while obtaining at the same time the convergence of the observer with a desired bound on the decay rate. An extension to the case of unmeasurable premise variables is also provided. Since the design conditions reduce to a set of linear matrix inequalities that can be solved efficiently using the available software, an evident advantage of the proposed approach is its simplicity. The final part of the paper presents an academic example and a real application to a multi-tank system, which exhibit clearly the performance and effectiveness of the proposed strategy.Postprint (author's final draft

    Unknown input observer for Takagi-Sugeno implicit models with unmeasurable premise variables

    Get PDF
    Recent years have seen a great deal of interest in implicit nonlinear systems, which are used in many different engineering applications. This study is dedicated to presenting a new method of fuzzy unknown inputs observer design to estimate simultaneously both non-measurable states and unknown inputs of continuous-time nonlinear implicit systems defined by Takagi-Sugeno (T-S) models with unmeasurable premise variables. The suggested observer is based on the singular value decomposition approach and rewritten the continuous-time T-S implicit models into an augmented fuzzy system, which gathers the unknown inputs and the state vector. The exponential convergence condition of the observer is established by using the Lyapunov theory and linear matrix inequalities are solved to determine the gains of the observer. Finally, the effectiveness of the suggested method is then assessed using a numerical application. It demonstrates that the estimated variables and the unknown input converge to the real variables accurately and quickly (less than 0.5 s)

    Experimental application of Takagi-Sugeno observers and controllers in a nonlinear electromechanical system

    Full text link
    [EN] In this paper, a systematic methodology to design fuzzy Takagi-Sugeno observers and controllers will be used to estimate the angular positions and speeds, as well as to stabilise an experimental mechanical system with 3 degrees of freedom (fixed quadrotor). Takagi-Sugeno observers and controllers are compared to observers and controllers based on the linearized model, both designed with the same optimization criteria and design parameters. Experimental results confirm that Takagi-Sugeno models and observers behave similarly to linear ones around the linearization point, but have a better performance over a larger operating range, as intuitively expected.The work of Zs. Lendek was supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-RU-TE-2011-3-0043, contract number 74/05.10.2011. Spanish authors are grateful to grants DPI2011-27845-C02-01 (A. Sala), DPI2011-27845-C02-02 (R. Sanchis), DPI2011-28507-C02-01 (P. Garcia) from Spanish Government, and PROMETEOII/2013/004 (A. Sala, P. Garcia) from Generalitat Valenciana.Lendek, Z.; Sala, A.; GarcĂ­a Gil, PJ.; Sanchis Llopis, R. (2013). Experimental application of Takagi-Sugeno observers and controllers in a nonlinear electromechanical system. Control Engineering and Applied Informatics. 15(4):3-14. http://hdl.handle.net/10251/150453S31415
    • …
    corecore