39,042 research outputs found

    A Deep-Unfolded Spatiotemporal RPCA Network For L+S Decomposition

    Full text link
    Low-rank and sparse decomposition based methods find their use in many applications involving background modeling such as clutter suppression and object tracking. While Robust Principal Component Analysis (RPCA) has achieved great success in performing this task, it can take hundreds of iterations to converge and its performance decreases in the presence of different phenomena such as occlusion, jitter and fast motion. The recently proposed deep unfolded networks, on the other hand, have demonstrated better accuracy and improved convergence over both their iterative equivalents as well as over other neural network architectures. In this work, we propose a novel deep unfolded spatiotemporal RPCA (DUST-RPCA) network, which explicitly takes advantage of the spatial and temporal continuity in the low-rank component. Our experimental results on the moving MNIST dataset indicate that DUST-RPCA gives better accuracy when compared with the existing state of the art deep unfolded RPCA networks

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches

    Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism

    Full text link
    In this paper, we propose a CNN-based framework for online MOT. This framework utilizes the merits of single object trackers in adapting appearance models and searching for target in the next frame. Simply applying single object tracker for MOT will encounter the problem in computational efficiency and drifted results caused by occlusion. Our framework achieves computational efficiency by sharing features and using ROI-Pooling to obtain individual features for each target. Some online learned target-specific CNN layers are used for adapting the appearance model for each target. In the framework, we introduce spatial-temporal attention mechanism (STAM) to handle the drift caused by occlusion and interaction among targets. The visibility map of the target is learned and used for inferring the spatial attention map. The spatial attention map is then applied to weight the features. Besides, the occlusion status can be estimated from the visibility map, which controls the online updating process via weighted loss on training samples with different occlusion statuses in different frames. It can be considered as temporal attention mechanism. The proposed algorithm achieves 34.3% and 46.0% in MOTA on challenging MOT15 and MOT16 benchmark dataset respectively.Comment: Accepted at International Conference on Computer Vision (ICCV) 201
    • …
    corecore