3 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Robust Quantized Generalized H

    Get PDF
    This paper deals with the problem of robust generalized H2 filter design for uncertain discrete-time fuzzy systems with output quantization. Firstly, the outputs of the system are quantized by a memoryless logarithmic quantizer before being transmitted to a filter. Then, attention is focused on the design of a generalized H2 filter to mitigate quantization effects, such that the filtering error systems ensure the robust stability with a prescribed generalized H2 noise attenuation level. Via applying Finsler lemma to introduce some slack variables and using the fuzzy Lyapunov function, sufficient conditions for the existence of a robust generalized H2 filter are expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach
    corecore