195 research outputs found

    Sum-Rate Maximization for Linearly Precoded Downlink Multiuser MISO Systems with Partial CSIT: A Rate-Splitting Approach

    Full text link
    This paper considers the Sum-Rate (SR) maximization problem in downlink MU-MISO systems under imperfect Channel State Information at the Transmitter (CSIT). Contrary to existing works, we consider a rather unorthodox transmission scheme. In particular, the message intended to one of the users is split into two parts: a common part which can be recovered by all users, and a private part recovered by the corresponding user. On the other hand, the rest of users receive their information through private messages. This Rate-Splitting (RS) approach was shown to boost the achievable Degrees of Freedom (DoF) when CSIT errors decay with increased SNR. In this work, the RS strategy is married with linear precoder design and optimization techniques to achieve a maximized Ergodic SR (ESR) performance over the entire range of SNRs. Precoders are designed based on partial CSIT knowledge by solving a stochastic rate optimization problem using means of Sample Average Approximation (SAA) coupled with the Weighted Minimum Mean Square Error (WMMSE) approach. Numerical results show that in addition to the ESR gains, the benefits of RS also include relaxed CSIT quality requirements and enhanced achievable rate regions compared to conventional transmission with NoRS.Comment: accepted to IEEE Transactions on Communication

    Robust THP Transceiver Designs for Multiuser MIMO Downlink with Imperfect CSIT

    Get PDF
    In this paper, we present robust joint non-linear transceiver designs for multiuser multiple-input multiple-output (MIMO) downlink in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for inter-user interference pre-cancellation at the transmitter. We consider robust transceiver designs that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error (SE) model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean square error (SMSE) under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem. The other model we consider is a norm-bounded error (NBE) model, where the CSIT error can be specified by an uncertainty set. This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design. For this model, we consider robust i) minimum SMSE, ii) MSE-constrained, and iii) MSE-balancing transceiver designs. We propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semi-definite programs (SDP). Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints.Comment: Accepted for publication in EURASIP Journal on Advances in Signal Processing: Special Issue on Multiuser MIMO Transmission with Limited Feedback, Cooperation, and Coordinatio

    Robust Precoding with Bayesian Error Modeling for Limited Feedback MU-MISO Systems

    Get PDF
    The final publication is available http://dx.doi.org/10.1109/TSP.2010.2052046[Abstract] We consider the robust precoder design for multiuser multiple-input single-output (MU-MISO) systems where the channel state information (CSI) is fed back from the single antenna receivers to the centralized transmitter equipped with multiple antennas. We propose to compress the feedback data by projecting the channel estimates onto a vector basis, known at the receivers and the transmitter, and quantizing the resulting coefficients. The channel estimator and the basis for the rank reduction are jointly optimized by minimizing the mean-square error (MSE) between the true and the rank-reduced CSI. Expressions for the conditional mean and the conditional covariance of the channel are derived which are necessary for the robust precoder design. These expressions take into account the following sources of error: channel estimation, truncation for rank reduction, quantization, and feedback channel delay. As an example for the robust problem formulation, vector precoding (VP) is designed based on the expectation of the MSE conditioned on the fed-back CSI. Our results show that robust precoding based on fed-back CSI clearly outperforms conventional precoding designs which do not take into account the errors in the CSI.Galicia, Consellería de Innovación, Industria e Comercio; PGIDT06TIC10501PRMinisterio de Educacion y Ciencia; TEC2007-68020-C04-01Ministerio de Educacion y Ciencia; CSD2008-00010.Ministerio de Educacion y Ciencia; HA2006-0112Alemania. Deutscher Akademischer Austauschdienst; D/06/1280

    Design of limited feedback for robust MMSE precoding in multiuser MISO systems

    Get PDF
    [Resumen] En este trabajo consideramos un sistema multiusuario con múltiples antenas en transmisión y una única antena en cada uno de los usuarios receptores y que se denota por brevedad como MU-MISO, del inglés Multi–User Multiple–Input/Single–Output. Este modelo MU–MISO se ajusta perfectamente al enlace descendente de un sistema de comunicaciones móviles, donde múltiples antenas situadas en la estación base envían información a varios usuarios dentro de su zona de cobertura y cuyos terminales móviles disponen generalmente de una única antena. Este canal descendente se denomina también canal de difusión (BC, del inglés Broadcast Channel). Cuando se considera un canal de difusión, el transmisor centralizado tiene claramente más grados de libertad que cada uno de los receptores descentralizados, por lo que es más apropiado separar las señales aplicando precodificación en transmisión. Para poder realizar el diseño de los parámetros del precodificador, el transmisor necesita conocer la información de canal (CSI, en inglés Channel State Information) correspondiente a los distintos usuarios receptores. En el caso de sistemas FDD (del inglés, Frequency Division Duplex), esta información puede obtenerse (al menos parcialmente) mediante realimentación, siempre tras haber aplicado un proceso de cuantificación de la información enviada con el objetivo de adaptarse a las condiciones de ancho de banda limitado del canal de retorno
    corecore