551 research outputs found

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    In-Network Processing For Mission-Criticalwireless Networked Sensing And Control: A Real-Time, Efficiency, And Resiliency Perspective

    Get PDF
    As wireless cyber-physical systems (WCPS) are increasingly being deployed in mission-critical applications, it becomes imperative that we consider application QoS requirements in in-network processing (INP). In this dissertation, we explore the potentials of two INP methods, packet packing and network coding, on improving network performance while satisfying application QoS requirements. We find that not only can these two techniques increase the energy efficiency, reliability, and throughput of WCPS while satisfying QoS requirements of applications in a relatively static environment, but also they can provide low cost proactive protection against transient node failures in a more dynamic wireless environment. We first study the problem of jointly optimizing packet packing and the timeliness of data delivery. We identify the conditions under which the problem is strong NP-hard, and we find that the problem complexity heavily depends on aggregation constraints instead of network and traffic properties. For cases when the problem is NP-hard, we show that there is no polynomial-time approximation scheme (PTAS); for cases when the problem can be solved in polynomial time, we design polynomial time, offline algorithms for finding the optimal packet packing schemes. We design a distributed, online protocol tPack that schedules packet transmissions to maximize the local utility of packet packing at each node. We evaluate the properties of tPack in NetEye testbed. We find that jointly optimizing data delivery timeliness and packet packing and considering real-world aggregation constraints significantly improve network performance. We then work on the problem of minimizing the transmission cost of network coding based routing in sensor networks. We propose the first mathematical framework so far as we know on how to theoretically compute the expected transmission cost of NC-based routing in terms of expected number of transmission. Based on this framework, we design a polynomial-time greedy algorithm for forwarder set selection and prove its optimality on transmission cost minimization. We designed EENCR, an energy-efficient NC-based routing protocol that implement our forwarder set selection algorithm to minimize the overall transmission cost. Through comparative study on EENCR and other state-of-the-art routing protocols, we show that EENCR significantly outperforms CTP, MORE and CodeOR in delivery reliability, delivery cost and network goodput. Furthermore, we study the 1+1 proactive protection problem using network coding. We show that even under a simplified setting, finding two node-disjoint routing braids with minimal total cost is NP-hard. We then design a heuristic algorithm to construct two node-disjoint braids with a transmission cost upper bounded by two shortest node-disjoint paths. And we design ProNCP, a proactive NC-based protection protocol using similar design philosophy as in EENCR. We evaluate the performance of ProNCP under various transient network failure scenarios. Experiment results show that ProNCP is resilient to various network failure scenarios and provides a state performance in terms of reliability, delivery cost and goodput. Our findings in this dissertation explore the challenges, benefits and solutions in designing real-time, efficient, resilient and QoS-guaranteed wireless cyber-physical systems, and our solutions shed lights for future research on related topics

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial
    • …
    corecore