1,301 research outputs found

    Stable, Robust and Super Fast Reconstruction of Tensors Using Multi-Way Projections

    Get PDF
    In the framework of multidimensional Compressed Sensing (CS), we introduce an analytical reconstruction formula that allows one to recover an NNth-order (I1×I2×⋯×IN)(I_1\times I_2\times \cdots \times I_N) data tensor X‾\underline{\mathbf{X}} from a reduced set of multi-way compressive measurements by exploiting its low multilinear-rank structure. Moreover, we show that, an interesting property of multi-way measurements allows us to build the reconstruction based on compressive linear measurements taken only in two selected modes, independently of the tensor order NN. In addition, it is proved that, in the matrix case and in a particular case with 33rd-order tensors where the same 2D sensor operator is applied to all mode-3 slices, the proposed reconstruction X‾τ\underline{\mathbf{X}}_\tau is stable in the sense that the approximation error is comparable to the one provided by the best low-multilinear-rank approximation, where τ\tau is a threshold parameter that controls the approximation error. Through the analysis of the upper bound of the approximation error we show that, in the 2D case, an optimal value for the threshold parameter τ=τ0>0\tau=\tau_0 > 0 exists, which is confirmed by our simulation results. On the other hand, our experiments on 3D datasets show that very good reconstructions are obtained using τ=0\tau=0, which means that this parameter does not need to be tuned. Our extensive simulation results demonstrate the stability and robustness of the method when it is applied to real-world 2D and 3D signals. A comparison with state-of-the-arts sparsity based CS methods specialized for multidimensional signals is also included. A very attractive characteristic of the proposed method is that it provides a direct computation, i.e. it is non-iterative in contrast to all existing sparsity based CS algorithms, thus providing super fast computations, even for large datasets.Comment: Submitted to IEEE Transactions on Signal Processin

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train

    Tensor Regression Networks

    Get PDF
    Convolutional neural networks typically consist of many convolutional layers followed by one or more fully connected layers. While convolutional layers map between high-order activation tensors, the fully connected layers operate on flattened activation vectors. Despite empirical success, this approach has notable drawbacks. Flattening followed by fully connected layers discards multilinear structure in the activations and requires many parameters. We address these problems by incorporating tensor algebraic operations that preserve multilinear structure at every layer. First, we introduce Tensor Contraction Layers (TCLs) that reduce the dimensionality of their input while preserving their multilinear structure using tensor contraction. Next, we introduce Tensor Regression Layers (TRLs), which express outputs through a low-rank multilinear mapping from a high-order activation tensor to an output tensor of arbitrary order. We learn the contraction and regression factors end-to-end, and produce accurate nets with fewer parameters. Additionally, our layers regularize networks by imposing low-rank constraints on the activations (TCL) and regression weights (TRL). Experiments on ImageNet show that, applied to VGG and ResNet architectures, TCLs and TRLs reduce the number of parameters compared to fully connected layers by more than 65% while maintaining or increasing accuracy. In addition to the space savings, our approach's ability to leverage topological structure can be crucial for structured data such as MRI. In particular, we demonstrate significant performance improvements over comparable architectures on three tasks associated with the UK Biobank dataset

    Bayesian Robust Tensor Factorization for Incomplete Multiway Data

    Full text link
    We propose a generative model for robust tensor factorization in the presence of both missing data and outliers. The objective is to explicitly infer the underlying low-CP-rank tensor capturing the global information and a sparse tensor capturing the local information (also considered as outliers), thus providing the robust predictive distribution over missing entries. The low-CP-rank tensor is modeled by multilinear interactions between multiple latent factors on which the column sparsity is enforced by a hierarchical prior, while the sparse tensor is modeled by a hierarchical view of Student-tt distribution that associates an individual hyperparameter with each element independently. For model learning, we develop an efficient closed-form variational inference under a fully Bayesian treatment, which can effectively prevent the overfitting problem and scales linearly with data size. In contrast to existing related works, our method can perform model selection automatically and implicitly without need of tuning parameters. More specifically, it can discover the groundtruth of CP rank and automatically adapt the sparsity inducing priors to various types of outliers. In addition, the tradeoff between the low-rank approximation and the sparse representation can be optimized in the sense of maximum model evidence. The extensive experiments and comparisons with many state-of-the-art algorithms on both synthetic and real-world datasets demonstrate the superiorities of our method from several perspectives.Comment: in IEEE Transactions on Neural Networks and Learning Systems, 201
    • …
    corecore