31 research outputs found

    A p-multigrid method enhanced with an ILUT smoother and its comparison to h-multigrid methods within Isogeometric Analysis

    Full text link
    Over the years, Isogeometric Analysis has shown to be a successful alternative to the Finite Element Method (FEM). However, solving the resulting linear systems of equations efficiently remains a challenging task. In this paper, we consider a p-multigrid method, in which coarsening is applied in the approximation order p instead of the mesh width h. Since the use of classical smoothers (e.g. Gauss-Seidel) results in a p-multigrid method with deteriorating performance for higher values of p, the use of an ILUT smoother is investigated. Numerical results and a spectral analysis indicate that the resulting p-multigrid method exhibits convergence rates independent of h and p. In particular, we compare both coarsening strategies (e.g. coarsening in h or p) adopting both smoothers for a variety of two and threedimensional benchmarks

    Robust isogeometric preconditioners for the Stokes system based on the Fast Diagonalization method

    Full text link
    In this paper we propose a new class of preconditioners for the isogeometric discretization of the Stokes system. Their application involves the solution of a Sylvester-like equation, which can be done efficiently thanks to the Fast Diagonalization method. These preconditioners are robust with respect to both the spline degree and mesh size. By incorporating information on the geometry parametrization and equation coefficients, we maintain efficiency on non-trivial computational domains and for variable kinematic viscosity. In our numerical tests we compare to a standard approach, showing that the overall iterative solver based on our preconditioners is significantly faster.Comment: 31 pages, 4 figure
    corecore