113 research outputs found

    Compressive Spectrum Sensing in Cognitive IoT

    Get PDF
    PhDWith the rising of new paradigms in wireless communications such as Internet of things (IoT), current static frequency allocation policy faces a primary challenge of spectrum scarcity, and thus encourages the IoT devices to have cognitive capabilities to access the underutilised spectrum in the temporal and spatial dimensions. Wideband spectrum sensing is one of the key functions to enable dynamic spectrum access, but entails a major implementation challenge in terms of sampling rate and computation cost since the sampling rate of analog-to-digital converters (ADCs) should be higher than twice of the spectrum bandwidth based on the Nyquist-Shannon sampling theorem. By exploiting the sparse nature of wideband spectrum, sub-Nyquist sampling and sparse signal recovery have shown potential capabilities in handling these problems, which are directly related to compressive sensing (CS) from the viewpoint of its origin. To invoke sub-Nyquist wideband spectrum sensing in IoT, blind signal acquisition with low-complexity sparse recovery is desirable on compact IoT devices. Moreover, with cooperation among distributed IoT devices, the complexity of sampling and reconstruc- tion can be further reduced with performance guarantee. Specifically, an adaptively- regularized iterative reweighted least squares (AR-IRLS) reconstruction algorithm is proposed to speed up the convergence of reconstruction with less number of iterations. Furthermore, a low-complexity compressive spectrum sensing algorithm is proposed to reduce computation complexity in each iteration of IRLS-based reconstruction algorithm, from cubic time to linear time. Besides, to transfer computation burden from the IoT devices to the core network, a joint iterative reweighted sparse recovery scheme with geo-location database is proposed to adopt the occupied channel information from geo- location database to reduce the complexity in the signal reconstruction. Since numerous IoT devices access or release the spectrum randomly, the sparsity levels of wideband spec-trum signals are varying and unknown. A blind CS-based sensing algorithm is proposed to enable the local secondary users (SUs) to adaptively adjust the sensing time or sam- pling rate without knowledge of spectral sparsity. Apart from the signal reconstruction at the back-end, a distributed sub-Nyquist sensing scheme is proposed by utilizing the surrounding IoT devices to jointly sample the spectrum based on the multi-coset sam- pling theory, in which only the minimum number of low-rate ADCs on the IoT devices are required to form coset samplers without the prior knowledge of the number of occu- pied channels and signal-to-noise ratios. The models of the proposed algorithms are derived and verified by numerical analyses and tested on both real-world and simulated TV white space signals

    A new vision of software defined radio: from academic experimentation to industrial explotation

    Get PDF
    The broad objective of this study is to examine the role of Software Defined Radio in an industrial field. Basically examines the changes that have to be done to achieve moving this technology in a commercial domain. It is important to predict the impacts of the introduction of Software Defined Radio in the telecommunications industry because it is a real future that is coming. The project starts with the evolution of mobile telecommunications systems through the history. Following this, Software Defined Radio is defined and its main features are commented such as its architecture. Moreover, it wants to predict the changes that the telecommunications industry will might suffer with the introduction of SDR and some future structural and organizational variations are suggested. Additionally, it is discussed the positive and negative aspects of the introduction of SDR in the commercial domain from different points of view and finally, the future SDR mobile phone is described with its possible hardware and software.Outgoin

    Reconfigurable Receiver Front-Ends for Advanced Telecommunication Technologies

    Get PDF
    The exponential growth of converging technologies, including augmented reality, autonomous vehicles, machine-to-machine and machine-to-human interactions, biomedical and environmental sensory systems, and artificial intelligence, is driving the need for robust infrastructural systems capable of handling vast data volumes between end users and service providers. This demand has prompted a significant evolution in wireless communication, with 5G and subsequent generations requiring exponentially improved spectral and energy efficiency compared to their predecessors. Achieving this entails intricate strategies such as advanced digital modulations, broader channel bandwidths, complex spectrum sharing, and carrier aggregation scenarios. A particularly challenging aspect arises in the form of non-contiguous aggregation of up to six carrier components across the frequency range 1 (FR1). This necessitates receiver front-ends to effectively reject out-of-band (OOB) interferences while maintaining high-performance in-band (IB) operation. Reconfigurability becomes pivotal in such dynamic environments, where frequency resource allocation, signal strength, and interference levels continuously change. Software-defined radios (SDRs) and cognitive radios (CRs) emerge as solutions, with direct RF-sampling receivers offering a suitable architecture in which the frequency translation is entirely performed in digital domain to avoid analog mixing issues. Moreover, direct RF- sampling receivers facilitate spectrum observation, which is crucial to identify free zones, and detect interferences. Acoustic and distributed filters offer impressive dynamic range and sharp roll off characteristics, but their bulkiness and lack of electronic adjustment capabilities limit their practicality. Active filters, on the other hand, present opportunities for integration in advanced CMOS technology, addressing size constraints and providing versatile programmability. However, concerns about power consumption, noise generation, and linearity in active filters require careful consideration.This thesis primarily focuses on the design and implementation of a low-voltage, low-power RFFE tailored for direct sampling receivers in 5G FR1 applications. The RFFE consists of a balun low-noise amplifier (LNA), a Q-enhanced filter, and a programmable gain amplifier (PGA). The balun-LNA employs noise cancellation, current reuse, and gm boosting for wideband gain and input impedance matching. Leveraging FD-SOI technology allows for programmable gain and linearity via body biasing. The LNA's operational state ranges between high-performance and high-tolerance modes, which are apt for sensitivityand blocking tests, respectively. The Q-enhanced filter adopts noise-cancelling, current-reuse, and programmable Gm-cells to realize a fourth-order response using two resonators. The fourth-order filter response is achieved by subtracting the individual response of these resonators. Compared to cascaded and magnetically coupled fourth-order filters, this technique maintains the large dynamic range of second-order resonators. Fabricated in 22-nm FD-SOI technology, the RFFE achieves 1%-40% fractional bandwidth (FBW) adjustability from 1.7 GHz to 6.4 GHz, 4.6 dB noise figure (NF) and an OOB third-order intermodulation intercept point (IIP3) of 22 dBm. Furthermore, concerning the implementation uncertainties and potential variations of temperature and supply voltage, design margins have been considered and a hybrid calibration scheme is introduced. A combination of on-chip and off-chip calibration based on noise response is employed to effectively adjust the quality factors, Gm-cells, and resonance frequencies, ensuring desired bandpass response. To optimize and accelerate the calibration process, a reinforcement learning (RL) agent is used.Anticipating future trends, the concept of the Q-enhanced filter extends to a multiple-mode filter for 6G upper mid-band applications. Covering the frequency range from 8 to 20 GHz, this RFFE can be configured as a fourth-order dual-band filter, two bandpass filters (BPFs) with an OOB notch, or a BPF with an IB notch. In cognitive radios, the filter’s transmission zeros can be positioned with respect to the carrier frequencies of interfering signals to yield over 50 dB blocker rejection

    Energy efficient cooperative spectrum sensing techniques in cognitive radio networks.

    Get PDF
    Master of Science in Electronic Engineering. University of KwaZulu-Natal, Durban 2017.The demand for spectrum is increasing particularly due to the accelerating growth in wireless data traffic generated by smart phones, tablets and other internet access devices. Most of prime spectrum is already licensed. The licensed spectrum is underutilized or used inefficiently, i.e. spectrum sits idle at any given time and location. Opportunistic Spectrum Access (OSA) is proposed as a solution to provide access to the temporarily unused spectrum commonly known as white spaces to improve spectrum utilization, increase spectrum efficiency and reduce spectrum scarcity. The aim of this research is to investigate potential impact of cooperative spectrum sensing techniques technologies on spectrum management. To fulfill this we focused on two spectrum sensing techniques namely; Firstly energy efficient statistical cooperative spectrum sensing in cognitive radio networks, this work exploits the higher order statistical (HOS) tests to detect the status of PU signal by a group of SUs. Secondly, an optimal energy based cooperative spectrum sensing in cognitive radio networks was investigated. In this work the performance of optimal hard fusion rules are employed in SU’s selection criteria and fusion of the decisions under Gaussian channel and Rayleigh channels. To optimize on the energy a two stage fusion and selection strategy is adopted to minimize the number of collaborating SUs

    Spectrum sensing algorithms and software-defined radio implementation for cognitive radio system

    Get PDF
    The scarcity of spectral resources in wireless communications, due to a fixed frequency allocation policy, is a strong limitation to the increasing demand for higher data rates. However, measurements showed that a large part of frequency channels are underutilized or almost unoccupied. The cognitive radio paradigm arises as a tempting solution to the spectral congestion problem. A cognitive radio must be able to identify transmission opportunities in unused channels and to avoid generating harmful interference with the licensed primary users. Its key enabling technology is the spectrum sensing unit, whose ultimate goal consists in providing an indication whether a primary transmission is taking place in the observed channel. Such indication is determined as the result of a binary hypothesis testing experiment wherein null hypothesis (alternate hypothesis) corresponds to the absence (presence) of the primary signal. The first parts of this thesis describes the spectrum sensing problem and presents some of the best performing detection techniques. Energy Detection and multi-antenna Eigenvalue-Based Detection algorithms are considered. Important aspects are taken into account, like the impact of noise estimation or the effect of primary user traffic. The performance of each detector is assessed in terms of false alarm probability and detection probability. In most experimental research, cognitive radio techniques are deployed in software-defined radio systems, radio transceivers that allow operating parameters (like modulation type, bandwidth, output power, etc.) to be set or altered by software.In the second part of the thesis, we introduce the software-defined radio concept. Then, we focus on the implementation of Energy Detection and Eigenvalue-Based Detection algorithms: first, the used software platform, GNU Radio, is described, secondly, the implementation of a parallel energy detector and a multi-antenna eigenbased detector is illustrated and details on the used methodologies are given. Finally, we present the deployed experimental cognitive testbeds and the used radio peripherals. The obtained algorithmic results along with the software-defined radio implementation may offer a set of tools able to create a realistic cognitive radio system with real-time spectrum sensing capabilities

    CELLULAR-ENABLED MACHINE TYPE COMMUNICATIONS: RECENT TECHNOLOGIES AND COGNITIVE RADIO APPROACHES

    Get PDF
    The scarcity of bandwidth has always been the main obstacle for providing reliable high data-rate wireless links, which are in great demand to accommodate nowadays and immediate future wireless applications. In addition, recent reports have showed inefficient usage and under-utilization of the available bandwidth. Cognitive radio (CR) has recently emerged as a promising solution to enhance the spectrum utilization, where it offers the ability for unlicensed users to access the licensed spectrum opportunistically. By allowing opportunistic spectrum access which is the main concept for the interweave network model, the overall spectrum utilization can be improved. This requires cognitive radio networks (CRNs) to consider the spectrum sensing and monitoring as an essential enabling process for the interweave network model. Machine-to-machine (M2M) communication, which is the basic enabler for the Internet-of-Things (IoT), has emerged to be a key element in future networks. Machines are expected to communicate with each other exchanging information and data without human intervention. The ultimate objective of M2M communications is to construct comprehensive connections among all machines distributed over an extensive coverage area. Due to the radical change in the number of users, the network has to carefully utilize the available resources in order to maintain reasonable quality-of-service (QoS). Generally, one of the most important resources in wireless communications is the frequency spectrum. To utilize the frequency spectrum in IoT environment, it can be argued that cognitive radio concept is a possible solution from the cost and performance perspectives. Thus, supporting numerous number of machines is possible by employing dual-mode base stations which can apply cognitive radio concept in addition to the legacy licensed frequency assignment. In this thesis, a detailed review of the state of the art related to the application of spectrum sensing in CR communications is considered. We present the latest advances related to the implementation of the legacy spectrum sensing approaches. We also address the implementation challenges for cognitive radios in the direction of spectrum sensing and monitoring. We propose a novel algorithm to solve the reduced throughput issue due to the scheduled spectrum sensing and monitoring. Further, two new architectures are considered to significantly reduce the power consumption required by the CR to enable wideband sensing. Both systems rely on the 1-bit quantization at the receiver side. The system performance is analytically investigated and simulated. Also, complexity and power consumption are investigated and studied. Furthermore, we address the challenges that are expected from the next generation M2M network as an integral part of the future IoT. This mainly includes the design of low-power low-cost machine with reduced bandwidth. The trade-off between cost, feasibility, and performance are also discussed. Because of the relaxation of the frequency and spatial diversities, in addition, to enabling the extended coverage mode, initial synchronization and cell search have new challenges for cellular-enabled M2M systems. We study conventional solutions with their pros and cons including timing acquisition, cell detection, and frequency offset estimation algorithms. We provide a technique to enhance the performance in the presence of the harsh detection environment for LTE-based machines. Furthermore, we present a frequency tracking algorithm for cellular M2M systems that utilizes the new repetitive feature of the broadcast channel symbols in next generation Long Term Evolution (LTE) systems. In the direction of narrowband IoT support, we propose a cell search and initial synchronization algorithm that utilizes the new set of narrowband synchronization signals. The proposed algorithms have been simulated at very low signal to noise ratios and in different fading environments

    Leveraging Cognitive Radio Networks Using Heterogeneous Wireless Channels

    Get PDF
    The popularity of ubiquitous Internet services has spurred the fast growth of wireless communications by launching data hungry multimedia applications to mobile devices. Powered by spectrum agile cognitive radios, the newly emerged cognitive radio networks (CRN) are proposed to provision the efficient spectrum reuse to improve spectrum utilization. Unlicensed users in CRN, or secondary users (SUs), access the temporarily idle channels in a secondary and opportunistic fashion while preventing harmful interference to licensed primary users (PUs). To effectively detect and exploit the spectrum access opportunities released from a wide spectrum, the heterogeneous wireless channel characteristics and the underlying prioritized spectrum reuse features need to be considered in the protocol design and resource management schemes in CRN, which plays a critical role in unlicensed spectrum sharing among multiple users. The purpose of this dissertation is to address the challenges of utilizing heterogeneous wireless channels in CRN by its intrinsic dynamic and diverse natures, and build the efficient, scalable and, more importantly, practical dynamic spectrum access mechanisms to enable the cost-effective transmissions for unlicensed users. Note that the spectrum access opportunities exhibit the diversity in the time/frequency/space domain, secondary transmission schemes typically follow three design principles including 1) utilizing local free channels within short transmission range, 2) cooperative and opportunistic transmissions, and 3) effectively coordinating transmissions in varying bandwidth. The entire research work in this dissertation casts a systematic view to address these principles in the design of the routing protocols, medium access control (MAC) protocols and radio resource management schemes in CRN. Specifically, as spectrum access opportunities usually have small spatial footprints, SUs only communicate with the nearby nodes in a small area. Thus, multi-hop transmissions in CRN are considered in this dissertation to enable the connections between any unlicensed users in the network. CRN typically consist of intermittent links of varying bandwidth so that the decision of routing is closely related with the spectrum sensing and sharing operations in the lower layers. An efficient opportunistic cognitive routing (OCR) scheme is proposed in which the forwarding decision at each hop is made by jointly considering physical characteristics of spectrum bands and diverse activities of PUs in each single band. Such discussion on spectrum aware routing continues coupled with the sensing selection and contention among multiple relay candidates in a multi-channel multi-hop scenario. An SU selects the next hop relay and the working channel based upon location information and channel usage statistics with instant link quality feedbacks. By evaluating the performance of the routing protocol and the joint channel and route selection algorithm with extensive simulations, we determine the optimal channel and relay combination with reduced searching complexity and improved spectrum utilization. Besides, we investigate the medium access control (MAC) protocol design in support of multimedia applications in CRN. To satisfy the quality of service (QoS) requirements of heterogeneous applications for SUs, such as voice, video, and data, channels are selected to probe for appropriate spectrum opportunities based on the characteristics and QoS demands of the traffic along with the statistics of channel usage patterns. We propose a QoS-aware MAC protocol for multi-channel single hop scenario where each single SU distributedly determines a set of channels for sensing and data transmission to satisfy QoS requirements. By analytical model and simulations, we determine the service differentiation parameters to provision multiple levels of QoS. We further extend our discussion of dynamic resource management to a more practical deployment case. We apply the experiences and skills learnt from cognitive radio study to cellular communications. In heterogeneous cellular networks, small cells are deployed in macrocells to enhance link quality, extend network coverage and offload traffic. As different cells focus on their own operation utilities, the optimization of the total system performance can be analogue to the game between PUs and SUs in CRN. However, there are unique challenges and operation features in such case. We first present challenging issues including interference management, network coordination, and interworking between cells in a tiered cellular infrastructure. We then propose an adaptive resource management framework to improve spectrum utilization and mitigate the co-channel interference between macrocells and small cells. A game-theory-based approach is introduced to handle power control issues under constrained control bandwidth and limited end user capability. The inter-cell interference is mitigated based upon orthogonal transmissions and strict protection for macrocell users. The research results in the dissertation can provide insightful lights on flexible network deployment and dynamic spectrum access for prioritized spectrum reuse in modern wireless systems. The protocols and algorithms developed in each topic, respectively, have shown practical and efficient solutions to build and optimize CRN

    Contribution à la conception d'un système de radio impulsionnelle ultra large bande intelligent

    No full text
    Faced with an ever increasing demand of high data-rates and improved adaptability among existing systems, which inturn is resulting in spectrum scarcity, the development of new radio solutions becomes mandatory in order to answer the requirements of these emergent applications. Among the recent innovations in the field of wireless communications,ultra wideband (UWB) has generated significant interest. Impulse based UWB (IR-UWB) is one attractive way of realizing UWB systems, which is characterized by the transmission of sub nanoseconds UWB pulses, occupying a band width up to 7.5 GHz with extremely low power density. This large band width results in several captivating features such as low-complexity low-cost transceiver, ability to overlay existing narrowband systems, ample multipath diversity, and precise ranging at centimeter level due to extremely fine temporal resolution.In this PhD dissertation, we investigate some of the key elements in the realization of an intelligent time-hopping based IR-UWB system. Due to striking resemblance of IR-UWB inherent features with cognitive radio (CR) requirements, acognitive UWB based system is first studied. A CR in its simplest form can be described as a radio, which is aware ofits surroundings and adapts intelligently. As sensing the environment for the availability of resources and then consequently adapting radio’s internal parameters to exploit them opportunistically constitute the major blocks of any CR, we first focus on robust spectrum sensing algorithms and the design of adaptive UWB waveforms for realizing a cognitive UWB radio. The spectrum sensing module needs to function with minimum a-priori knowledge available about the operating characteristics and detect the primary users as quickly as possible. Keeping this in mind, we develop several spectrum sensing algorithms invoking recent results on the random matrix theory, which can provide efficient performance with a few number of samples. Next, we design the UWB waveform using a linear combination of Bsp lines with weight coefficients being optimized by genetic algorithms. This results in a UWB waveform that is spectrally efficient and at the same time adaptable to incorporate the cognitive radio requirements. In the 2nd part of this thesis, some research challenges related to signal processing in UWB systems, namely synchronization and dense multipath channel estimation are addressed. Several low-complexity non-data-aided (NDA) synchronization algorithms are proposed for BPSK and PSM modulations, exploiting either the orthogonality of UWB waveforms or theinherent cyclostationarity of IR-UWB signaling. Finally, we look into the channel estimation problem in UWB, whichis very demanding due to particular nature of UWB channels and at the same time very critical for the coherent Rake receivers. A method based on a joint maximum-likelihood (ML) and orthogonal subspace (OS) approaches is proposed which exhibits improved performance than both of these methods individually.Face à une demande sans cesse croissante de haut débit et d’adaptabilité des systèmes existants, qui à son tour se traduit par l’encombrement du spectre, le développement de nouvelles solutions dans le domaine des communications sans fil devient nécessaire afin de répondre aux exigences des applications émergentes. Parmi les innovations récentes dans ce domaine, l’ultra large bande (UWB) a suscité un vif intérêt. La radio impulsionnelle UWB (IR-UWB), qui est une solution intéressante pour réaliser des systèmes UWB, est caractérisée par la transmission des impulsions de très courte durée, occupant une largeur de bande allant jusqu’à 7,5 GHz, avec une densité spectrale de puissance extrêmement faible. Cette largeur de bande importante permet de réaliser plusieurs fonctionnalités intéressantes, telles que l’implémentation à faible complexité et à coût réduit, la possibilité de se superposer aux systèmes à bande étroite, la diversité spatiale et la localisation très précise de l’ordre centimétrique, en raison de la résolution temporelle très fine.Dans cette thèse, nous examinons certains éléments clés dans la réalisation d'un système IR-UWB intelligent. Nous avons tout d’abord proposé le concept de radio UWB cognitive à partir des similarités existantes entre l'IR-UWB et la radio cognitive. Dans sa définition la plus simple, un tel système est conscient de son environnement et s'y adapte intelligemment. Ainsi, nous avons tout d’abord focalisé notre recherché sur l’analyse de la disponibilité des ressources spectrales (spectrum sensing) et la conception d’une forme d’onde UWB adaptative, considérées comme deux étapes importantes dans la réalisation d'une radio cognitive UWB. Les algorithmes de spectrum sensing devraient fonctionner avec un minimum de connaissances a priori et détecter rapidement les utilisateurs primaires. Nous avons donc développé de tels algorithmes utilisant des résultats récents sur la théorie des matrices aléatoires, qui sont capables de fournir de bonnes performances, avec un petit nombre d'échantillons. Ensuite, nous avons proposé une méthode de conception de la forme d'onde UWB, vue comme une superposition de fonctions B-splines, dont les coefficients de pondération sont optimisés par des algorithmes génétiques. Il en résulte une forme d'onde UWB qui est spectralement efficace et peut s’adapter pour intégrer les contraintes liées à la radio cognitive. Dans la 2ème partie de cette thèse, nous nous sommes attaqués à deux autres problématiques importantes pour le fonctionnement des systèmes UWB, à savoir la synchronisation et l’estimation du canal UWB, qui est très dense en trajets multiples. Ainsi, nous avons proposé plusieurs algorithmes de synchronisation, de faible complexité et sans séquence d’apprentissage, pour les modulations BPSK et PSM, en exploitant l'orthogonalité des formes d'onde UWB ou la cyclostationnarité inhérente à la signalisation IR-UWB. Enfin, nous avons travaillé sur l'estimation du canal UWB, qui est un élément critique pour les récepteurs Rake cohérents. Ainsi, nous avons proposé une méthode d’estimation du canal basée sur une combinaison de deux approches complémentaires, le maximum de vraisemblance et la décomposition en sous-espaces orthogonaux,d’améliorer globalement les performances
    • …
    corecore