25,619 research outputs found

    Aerial moving target detection based on motion vector field analysis

    Get PDF
    An efficient automatic detection strategy for aerial moving targets in airborne forward-looking infrared (FLIR) imagery is presented in this paper. Airborne cameras induce a global motion over all objects in the image, that invalidates motion-based segmentation techniques for static cameras. To overcome this drawback, previous works compensate the camera ego-motion. However, this approach is too much dependent on the quality of the ego-motion compensation, tending towards an over-detection. In this work, the proposed strategy estimates a robust motion vector field, free of erroneous vectors. Motion vectors are classified into different independent moving objects, corresponding to background objects and aerial targets. The aerial targets are directly segmented using their associated motion vectors. This detection strategy has a low computational cost, since no compensation process or motion-based technique needs to be applied. Excellent results have been obtained over real FLIR sequences

    Resolving depth measurement ambiguity with commercially available range imaging cameras

    Get PDF
    Time-of-flight range imaging is typically performed with the amplitude modulated continuous wave method. This involves illuminating a scene with amplitude modulated light. Reflected light from the scene is received by the sensor with the range to the scene encoded as a phase delay of the modulation envelope. Due to the cyclic nature of phase, an ambiguity in the measured range occurs every half wavelength in distance, thereby limiting the maximum useable range of the camera. This paper proposes a procedure to resolve depth ambiguity using software post processing. First, the range data is processed to segment the scene into separate objects. The average intensity of each object can then be used to determine which pixels are beyond the non-ambiguous range. The results demonstrate that depth ambiguity can be resolved for various scenes using only the available depth and intensity information. This proposed method reduces the sensitivity to objects with very high and very low reflectance, normally a key problem with basic threshold approaches. This approach is very flexible as it can be used with any range imaging camera. Furthermore, capture time is not extended, keeping the artifacts caused by moving objects at a minimum. This makes it suitable for applications such as robot vision where the camera may be moving during captures. The key limitation of the method is its inability to distinguish between two overlapping objects that are separated by a distance of exactly one non-ambiguous range. Overall the reliability of this method is higher than the basic threshold approach, but not as high as the multiple frequency method of resolving ambiguity

    Aerial Vehicle Tracking by Adaptive Fusion of Hyperspectral Likelihood Maps

    Full text link
    Hyperspectral cameras can provide unique spectral signatures for consistently distinguishing materials that can be used to solve surveillance tasks. In this paper, we propose a novel real-time hyperspectral likelihood maps-aided tracking method (HLT) inspired by an adaptive hyperspectral sensor. A moving object tracking system generally consists of registration, object detection, and tracking modules. We focus on the target detection part and remove the necessity to build any offline classifiers and tune a large amount of hyperparameters, instead learning a generative target model in an online manner for hyperspectral channels ranging from visible to infrared wavelengths. The key idea is that, our adaptive fusion method can combine likelihood maps from multiple bands of hyperspectral imagery into one single more distinctive representation increasing the margin between mean value of foreground and background pixels in the fused map. Experimental results show that the HLT not only outperforms all established fusion methods but is on par with the current state-of-the-art hyperspectral target tracking frameworks.Comment: Accepted at the International Conference on Computer Vision and Pattern Recognition Workshops, 201

    A mask-based approach for the geometric calibration of thermal-infrared cameras

    Get PDF
    Accurate and efficient thermal-infrared (IR) camera calibration is important for advancing computer vision research within the thermal modality. This paper presents an approach for geometrically calibrating individual and multiple cameras in both the thermal and visible modalities. The proposed technique can be used to correct for lens distortion and to simultaneously reference both visible and thermal-IR cameras to a single coordinate frame. The most popular existing approach for the geometric calibration of thermal cameras uses a printed chessboard heated by a flood lamp and is comparatively inaccurate and difficult to execute. Additionally, software toolkits provided for calibration either are unsuitable for this task or require substantial manual intervention. A new geometric mask with high thermal contrast and not requiring a flood lamp is presented as an alternative calibration pattern. Calibration points on the pattern are then accurately located using a clustering-based algorithm which utilizes the maximally stable extremal region detector. This algorithm is integrated into an automatic end-to-end system for calibrating single or multiple cameras. The evaluation shows that using the proposed mask achieves a mean reprojection error up to 78% lower than that using a heated chessboard. The effectiveness of the approach is further demonstrated by using it to calibrate two multiple-camera multiple-modality setups. Source code and binaries for the developed software are provided on the project Web site

    Indoor assistance for visually impaired people using a RGB-D camera

    Get PDF
    In this paper a navigational aid for visually impaired people is presented. The system uses a RGB-D camera to perceive the environment and implements self-localization, obstacle detection and obstacle classification. The novelty of this work is threefold. First, self-localization is performed by means of a novel camera tracking approach that uses both depth and color information. Second, to provide the user with semantic information, obstacles are classified as walls, doors, steps and a residual class that covers isolated objects and bumpy parts on the floor. Third, in order to guarantee real time performance, the system is accelerated by offloading parallel operations to the GPU. Experiments demonstrate that the whole system is running at 9 Hz

    People tracking by cooperative fusion of RADAR and camera sensors

    Get PDF
    Accurate 3D tracking of objects from monocular camera poses challenges due to the loss of depth during projection. Although ranging by RADAR has proven effective in highway environments, people tracking remains beyond the capability of single sensor systems. In this paper, we propose a cooperative RADAR-camera fusion method for people tracking on the ground plane. Using average person height, joint detection likelihood is calculated by back-projecting detections from the camera onto the RADAR Range-Azimuth data. Peaks in the joint likelihood, representing candidate targets, are fed into a Particle Filter tracker. Depending on the association outcome, particles are updated using the associated detections (Tracking by Detection), or by sampling the raw likelihood itself (Tracking Before Detection). Utilizing the raw likelihood data has the advantage that lost targets are continuously tracked even if the camera or RADAR signal is below the detection threshold. We show that in single target, uncluttered environments, the proposed method entirely outperforms camera-only tracking. Experiments in a real-world urban environment also confirm that the cooperative fusion tracker produces significantly better estimates, even in difficult and ambiguous situations

    Deep Thermal Imaging: Proximate Material Type Recognition in the Wild through Deep Learning of Spatial Surface Temperature Patterns

    Get PDF
    We introduce Deep Thermal Imaging, a new approach for close-range automatic recognition of materials to enhance the understanding of people and ubiquitous technologies of their proximal environment. Our approach uses a low-cost mobile thermal camera integrated into a smartphone to capture thermal textures. A deep neural network classifies these textures into material types. This approach works effectively without the need for ambient light sources or direct contact with materials. Furthermore, the use of a deep learning network removes the need to handcraft the set of features for different materials. We evaluated the performance of the system by training it to recognise 32 material types in both indoor and outdoor environments. Our approach produced recognition accuracies above 98% in 14,860 images of 15 indoor materials and above 89% in 26,584 images of 17 outdoor materials. We conclude by discussing its potentials for real-time use in HCI applications and future directions.Comment: Proceedings of the 2018 CHI Conference on Human Factors in Computing System
    corecore