2,495 research outputs found

    Robust gradient-based discrete-time iterative learning control algorithms

    Get PDF
    This paper considers the use of matrix models and the robustness of a gradient-based Iterative Learning Control (ILC) algorithm using both fixed learning gains and gains derived from parameter optimization. The philosophy of the paper is to ensure monotonic convergence with respect to the mean square value of the error time series. The paper provides a complete and rigorous analysis for the systematic use of matrix models in ILC. Matrix models make analysis clearer and provide necessary and sufficient conditions for robust monotonic convergence. They also permit the construction of sufficient frequency domain conditions for robust monotonic convergence on finite time intervals for both causal and non-causal controller dynamics. The results are compared with recent results for robust inverse-model based ILC algorithms and it is seen that the algorithm has the potential to improve robustness to high frequency modelling errors provided that resonances within the plant bandwidth have been suppressed by feedback or series compensation

    Sparse Iterative Learning Control with Application to a Wafer Stage: Achieving Performance, Resource Efficiency, and Task Flexibility

    Get PDF
    Trial-varying disturbances are a key concern in Iterative Learning Control (ILC) and may lead to inefficient and expensive implementations and severe performance deterioration. The aim of this paper is to develop a general framework for optimization-based ILC that allows for enforcing additional structure, including sparsity. The proposed method enforces sparsity in a generalized setting through convex relaxations using â„“1\ell_1 norms. The proposed ILC framework is applied to the optimization of sampling sequences for resource efficient implementation, trial-varying disturbance attenuation, and basis function selection. The framework has a large potential in control applications such as mechatronics, as is confirmed through an application on a wafer stage.Comment: 12 pages, 14 figure

    Learning for Advanced Motion Control

    Full text link
    Iterative Learning Control (ILC) can achieve perfect tracking performance for mechatronic systems. The aim of this paper is to present an ILC design tutorial for industrial mechatronic systems. First, a preliminary analysis reveals the potential performance improvement of ILC prior to its actual implementation. Second, a frequency domain approach is presented, where fast learning is achieved through noncausal model inversion, and safe and robust learning is achieved by employing a contraction mapping theorem in conjunction with nonparametric frequency response functions. The approach is demonstrated on a desktop printer. Finally, a detailed analysis of industrial motion systems leads to several shortcomings that obstruct the widespread implementation of ILC algorithms. An overview of recently developed algorithms, including extensions using machine learning algorithms, is outlined that are aimed to facilitate broad industrial deployment.Comment: 8 pages, 15 figures, IEEE 16th International Workshop on Advanced Motion Control, 202

    A robust machine learning method for cell-load approximation in wireless networks

    Full text link
    We propose a learning algorithm for cell-load approximation in wireless networks. The proposed algorithm is robust in the sense that it is designed to cope with the uncertainty arising from a small number of training samples. This scenario is highly relevant in wireless networks where training has to be performed on short time scales because of a fast time-varying communication environment. The first part of this work studies the set of feasible rates and shows that this set is compact. We then prove that the mapping relating a feasible rate vector to the unique fixed point of the non-linear cell-load mapping is monotone and uniformly continuous. Utilizing these properties, we apply an approximation framework that achieves the best worst-case performance. Furthermore, the approximation preserves the monotonicity and continuity properties. Simulations show that the proposed method exhibits better robustness and accuracy for small training sets in comparison with standard approximation techniques for multivariate data.Comment: Shorter version accepted at ICASSP 201

    Krotov: A Python implementation of Krotov's method for quantum optimal control

    Get PDF
    We present a new open-source Python package, krotov, implementing the quantum optimal control method of that name. It allows to determine time-dependent external fields for a wide range of quantum control problems, including state-to-state transfer, quantum gate implementation and optimization towards an arbitrary perfect entangler. Krotov's method compares to other gradient-based optimization methods such as gradient-ascent and guarantees monotonic convergence for approximately time-continuous control fields. The user-friendly interface allows for combination with other Python packages, and thus high-level customization

    Iterative Learning Control design for uncertain and time-windowed systems

    Get PDF
    Iterative Learning Control (ILC) is a control strategy capable of dramatically increasing the performance of systems that perform batch repetitive tasks. This performance improvement is achieved by iteratively updating the command signal, using measured error data from previous trials, i.e., by learning from past experience. This thesis deals with ILC for time-windowed and uncertain systems. With the term "time-windowed systems", we mean systems in which actuation and measurement time intervals differ. With "uncertain systems", we refer to systems whose behavior is represented by incomplete or inaccurate models. To study the ILC design issues for time-windowed systems, we consider the task of residual vibration suppression in point-to-point motion problems. In this application, time windows are used to modify the original system to comply with the task. With the properties of the time-windowed system resulting in nonconverging behavior of the original ILC controlled system, we introduce a novel ILC design framework in which convergence can be achieved. Additionally, this framework reveals new design freedom in ILC for point-to-point motion problems, which is unknown in "standard" ILC. Theoretical results concerning the problem formulation and control design for these systems are supported by experimental results on a SISO and MIMO flexible structure. The analysis and design results of ILC for time-windowed systems are subsequently extended to the whole class of linear systems whose input and output are filtered with basis functions (which include time windows). Analysis and design theory of ILC for this class of systems reveals how different ILC objectives can be reached by design of separate parts of the ILC controller. Our research on ILC for uncertain systems is divided into two parts. In the first part, we formulate an approach to analyze the robustness properties of existing ILC controllers, using well developed µ theory. To exemplify our findings, we analyze the robustness properties of linear quadratic (LQ) norm optimal ILC controllers. Moreover, we show that the approach is applicable to the class of linear trial invariant ILC controlled systems with basis functions. In the second part, we present a finite time interval robust ILC control strategy that is robust against model uncertainty as given by an additive uncertainty model. For that, we exploit H1 control theory, however, modified such that the controller is not restricted to be causal and operates on a finite time interval. Furthermore, we optimize the robust controller so as to optimize performance while remaining robustly monotonically convergent. By means of experiments on a SISO flexible system, we show that this control strategy can indeed outperform LQ norm optimal ILC and causal robust ILC control strategies

    Decentralized coordinated ILC system design and transient growth control using iteration-varying filter

    Get PDF
    In automation control area, with the increasing demand in task complexity and high control precision, coordination between systems is required. There are mainly two types of coordinated systems, decentralized and centralized. This thesis is focused on a large array of coordinated systems, and the decentralized structure is preferred. To achieve high control precision in a coordinated system, many existing approaches may work, and in the system performing the repeating process, Iterative Learning Control (ILC) is a useful approach. Therefore, in this thesis, a decentralized coordinated ILC system is proposed and analyzed. The proposed control system is especially useful in coordinating a large array of systems. Transient growth is a common problem in both single and coordinated ILC systems. Several ILC algorithms have been developed that can guarantee monotonic convergence, but these algorithms are not feasible or do not work well in decentralized coordinated ILC systems. This thesis presents a new approach to reduce the transient growth in ILC. An iteration-varying filter, which can be applied to any linear ILC system, single or coordinated, is proposed. It is also proved that the filter always exists when the ILC system is stable. A theoretical result and a tuning approach are given in the thesis to design the filter. Two examples, one single system and one coordinated system, are presented to show the design of a decentralized coordinated ILC system and the effectiveness of the iteration-varying filter --Abstract, page iii
    • …
    corecore