19,583 research outputs found

    Neurodynamic approaches to model predictive control.

    Get PDF
    Pan, Yunpeng.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (p. 98-107).Abstract also in Chinese.Abstract --- p.ip.iiiAcknowledgement --- p.ivChapter 1 --- Introduction --- p.2Chapter 1.1 --- Model Predictive Control --- p.2Chapter 1.2 --- Neural Networks --- p.3Chapter 1.3 --- Existing studies --- p.6Chapter 1.4 --- Thesis structure --- p.7Chapter 2 --- Two Recurrent Neural Networks Approaches to Linear Model Predictive Control --- p.9Chapter 2.1 --- Problem Formulation --- p.9Chapter 2.1.1 --- Quadratic Programming Formulation --- p.10Chapter 2.1.2 --- Linear Programming Formulation --- p.13Chapter 2.2 --- Neural Network Approaches --- p.15Chapter 2.2.1 --- Neural Network Model 1 --- p.15Chapter 2.2.2 --- Neural Network Model 2 --- p.16Chapter 2.2.3 --- Control Scheme --- p.17Chapter 2.3 --- Simulation Results --- p.18Chapter 3 --- Model Predictive Control for Nonlinear Affine Systems Based on the Simplified Dual Neural Network --- p.22Chapter 3.1 --- Problem Formulation --- p.22Chapter 3.2 --- A Neural Network Approach --- p.25Chapter 3.2.1 --- The Simplified Dual Network --- p.26Chapter 3.2.2 --- RNN-based MPC Scheme --- p.28Chapter 3.3 --- Simulation Results --- p.28Chapter 3.3.1 --- Example 1 --- p.28Chapter 3.3.2 --- Example 2 --- p.29Chapter 3.3.3 --- Example 3 --- p.33Chapter 4 --- Nonlinear Model Predictive Control Using a Recurrent Neural Network --- p.36Chapter 4.1 --- Problem Formulation --- p.36Chapter 4.2 --- A Recurrent Neural Network Approach --- p.40Chapter 4.2.1 --- Neural Network Model --- p.40Chapter 4.2.2 --- Learning Algorithm --- p.41Chapter 4.2.3 --- Control Scheme --- p.41Chapter 4.3 --- Application to Mobile Robot Tracking --- p.42Chapter 4.3.1 --- Example 1 --- p.44Chapter 4.3/2 --- Example 2 --- p.44Chapter 4.3.3 --- Example 3 --- p.46Chapter 4.3.4 --- Example 4 --- p.48Chapter 5 --- Model Predictive Control of Unknown Nonlinear Dynamic Sys- tems Based on Recurrent Neural Networks --- p.50Chapter 5.1 --- MPC System Description --- p.51Chapter 5.1.1 --- Model Predictive Control --- p.51Chapter 5.1.2 --- Dynamical System Identification --- p.52Chapter 5.2 --- Problem Formulation --- p.54Chapter 5.3 --- Dynamic Optimization --- p.58Chapter 5.3.1 --- The Simplified Dual Neural Network --- p.59Chapter 5.3.2 --- A Recursive Learning Algorithm --- p.60Chapter 5.3.3 --- Convergence Analysis --- p.61Chapter 5.4 --- RNN-based MPC Scheme --- p.65Chapter 5.5 --- Simulation Results --- p.67Chapter 5.5.1 --- Example 1 --- p.67Chapter 5.5.2 --- Example 2 --- p.68Chapter 5.5.3 --- Example 3 --- p.76Chapter 6 --- Model Predictive Control for Systems With Bounded Uncertainties Using a Discrete-Time Recurrent Neural Network --- p.81Chapter 6.1 --- Problem Formulation --- p.82Chapter 6.1.1 --- Process Model --- p.82Chapter 6.1.2 --- Robust. MPC Design --- p.82Chapter 6.2 --- Recurrent Neural Network Approach --- p.86Chapter 6.2.1 --- Neural Network Model --- p.86Chapter 6.2.2 --- Convergence Analysis --- p.88Chapter 6.2.3 --- Control Scheme --- p.90Chapter 6.3 --- Simulation Results --- p.91Chapter 7 --- Summary and future works --- p.95Chapter 7.1 --- Summary --- p.95Chapter 7.2 --- Future works --- p.96Bibliography --- p.9

    Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results

    Get PDF
    This paper focuses on current control in a permanentmagnet synchronous motor (PMSM). The paper has two main objectives: The first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with conventional PI-based vector-control methods. The NN is developed using the full dynamic equation of a PMSM, and trained to implement optimal control based on approximate dynamic programming. The second objective is to evaluate the robust and adaptive performance of the NN controller against that of the conventional standard vector controller under motor parameter variation and dynamic control conditions by (a) simulating the behavior of a PMSM typically used in realistic electric vehicle applications and (b) building an experimental system for hardware validation as well as combined hardware and simulation evaluation. The results demonstrate that the NN controller outperforms conventional vector controllers in both simulation and hardware implementation

    LSTM Neural Networks: Input to State Stability and Probabilistic Safety Verification

    Get PDF
    The goal of this paper is to analyze Long Short Term Memory (LSTM) neural networks from a dynamical system perspective. The classical recursive equations describing the evolution of LSTM can be recast in state space form, resulting in a time-invariant nonlinear dynamical system. A sufficient condition guaranteeing the Input-to-State (ISS) stability property of this class of systems is provided. The ISS property entails the boundedness of the output reachable set of the LSTM. In light of this result, a novel approach for the safety verification of the network, based on the Scenario Approach, is devised. The proposed method is eventually tested on a pH neutralization process.Comment: Accepted for Learning for dynamics & control (L4DC) 202
    • …
    corecore