162 research outputs found

    Multiple structure recovery with maximum coverage

    Get PDF
    We present a general framework for geometric model fitting based on a set coverage formulation that caters for intersecting structures and outliers in a simple and principled manner. The multi-model fitting problem is formulated in terms of the optimization of a consensus-based global cost function, which allows to sidestep the pitfalls of preference approaches based on clustering and to avoid the difficult trade-off between data fidelity and complexity of other optimization formulations. Two especially appealing characteristics of this method are the ease with which it can be implemented and its modularity with respect to the solver and to the sampling strategy. Few intelligible parameters need to be set and tuned, namely the inlier threshold and the number of desired models. The summary of the experiments is that our method compares favourably with its competitors overall, and it is always either the best performer or almost on par with the best performer in specific scenarios

    Multiple structure recovery with T-linkage

    Get PDF
    reserved2noThis work addresses the problem of robust fitting of geometric structures to noisy data corrupted by outliers. An extension of J-linkage (called T-linkage) is presented and elaborated. T-linkage improves the preference analysis implemented by J-linkage in term of performances and robustness, considering both the representation and the segmentation steps. A strategy to reject outliers and to estimate the inlier threshold is proposed, resulting in a versatile tool, suitable for multi-model fitting “in the wild”. Experiments demonstrate that our methods perform better than J-linkage on simulated data, and compare favorably with state-of-the-art methods on public domain real datasets.mixedMagri L.; Fusiello A.Magri, L.; Fusiello, A

    Spatially Coherent RANSAC for Multi-Model Fitting

    Get PDF
    RANSAC [15, 38, 1] is a reliable method for fitting parametric models to sparse data with many outliers. Originally designed for extracting a single model, RANSAC also has variants for fitting multiple models when supported by data. Our main insight is that, in practice, inliers for each model are often spatially coherent — all previous RANSAC-based methods ignore this. Our new method fits an unspecified number of models to data by combining ideas of random sampling and spatial regularization. As in basic RANSAC, we randomly sample data points to generate a set of proposed models (labels). We formulate model selection and inlier classification as a single problem — labeling of triangulated data points. Geometric fit errors and spatial coherence are combined in one MRF-based energy. In contrast to basic RANSAC, inlier classification does not depend on a fixed threshold. Moreover, our optimization framework allows iterative re-estimation of models/inliers with a clear stopping criteria and convergence guarantees. We show that our new method, SCO- RANSAC, can significantly improve results on synthetic and real data supporting multiple linear, affine, and homographic models

    Labeled Sampling Consensus A Novel Algorithm For Robustly Fitting Multiple Structures Using Compressed Sampling

    Get PDF
    The ability to robustly fit structures in datasets that contain outliers is a very important task in Image Processing, Pattern Recognition and Computer Vision. Random Sampling Consensus or RANSAC is a very popular method for this task, due to its ability to handle over 50% outliers. The problem with RANSAC is that it is only capable of finding a single structure. Therefore, if a dataset contains multiple structures, they must be found sequentially by finding the best fit, removing the points, and repeating the process. However, removing incorrect points from the dataset could prove disastrous. This thesis offers a novel approach to sampling consensus that extends its ability to discover multiple structures in a single iteration through the dataset. The process introduced is an unsupervised method, requiring no previous knowledge to the distribution of the input data. It uniquely assigns labels to different instances of similar structures. The algorithm is thus called Labeled Sampling Consensus or L-SAC. These unique instances will tend to cluster around one another allowing the individual structures to be extracted using simple clustering techniques. Since divisions instead of modes are analyzed, only a single instance of a structure need be recovered. This ability of L-SAC allows a novel sampling procedure to be presented “compressing” the required samples needed compared to traditional sampling schemes while ensuring all structures have been found. L-SAC is a flexible framework that can be applied to many problem domains

    Multiple structure recovery via robust preference analysis

    Get PDF
    2noThis paper address the extraction of multiple models from outlier-contaminated data by exploiting preference analysis and low rank approximation. First points are represented in the preference space, then Robust PCA (Principal Component Analysis) and Symmetric NMF (Non negative Matrix Factorization) are used to break the multi-model fitting problem into many single-model problems, which in turn are tackled with an approach inspired to MSAC (M-estimator SAmple Consensus) coupled with a model-specific scale estimate. Experimental validation on public, real data-sets demonstrates that our method compares favorably with the state of the art.openopenMagri, Luca; Fusiello, AndreaMagri, Luca; Fusiello, Andre

    MULTIPLE STRUCTURE RECOVERY VIA PREFERENCE ANALYSIS IN CONCEPTUAL SPACE

    Get PDF
    Finding multiple models (or structures) that fit data corrupted by noise and outliers is an omnipresent problem in empirical sciences, includingComputer Vision, where organizing unstructured visual data in higher level geometric structures is a necessary and basic step to derive better descriptions and understanding of a scene. This challenging problem has a chicken-and-egg pattern: in order to estimate models one needs to first segment the data, and in order to segment the data it is necessary to know which structure points belong to. Most of the multi-model fitting techniques proposed in the literature can be divided in two classes, according to which horn of the chicken-egg-dilemma is addressed first, namely consensus and preference analysis. Consensus-based methods put the emphasis on the estimation part of the problem and focus on models that describe has many points as possible. On the other side, preference analysis concentrates on the segmentation side in order to find a proper partition of the data, from which model estimation follows. The research conducted in this thesis attempts to provide theoretical footing to the preference approach and to elaborate it in term of performances and robustness. In particular, we derive a conceptual space in which preference analysis is robustly performed thanks to three different formulations of multiple structures recovery, i.e. linkage clustering, spectral analysis and set coverage. In this way we are able to propose new and effective strategies to link together consensus and preferences based criteria to overcome the limitation of both. In order to validate our researches, we have applied our methodologies to some significant Computer Vision tasks including: geometric primitive fitting (e.g. line fitting; circle fitting; 3D plane fitting), multi-body segmentation, plane segmentation, and video motion segmentation
    • …
    corecore