16 research outputs found

    Performance-driven control of nano-motion systems

    Get PDF
    The performance of high-precision mechatronic systems is subject to ever increasing demands regarding speed and accuracy. To meet these demands, new actuator drivers, sensor signal processing and control algorithms have to be derived. The state-of-the-art scientific developments in these research directions can significantly improve the performance of high-precision systems. However, translation of the scientific developments to usable technology is often non-trivial. To improve the performance of high-precision systems and to bridge the gap between science and technology, a performance-driven control approach has been developed. First, the main performance limiting factor (PLF) is identified. Then, a model-based compensation method is developed for the identified PLF. Experimental validation shows the performance improvement and reveals the next PLF to which the same procedure is applied. The compensation method can relate to the actuator driver, the sensor system or the control algorithm. In this thesis, the focus is on nano-motion systems that are driven by piezo actuators and/or use encoder sensors. Nano-motion systems are defined as the class of systems that require velocities ranging from nanometers per second to millimeters per second with a (sub)nanometer resolution. The main PLFs of such systems are the actuator driver, hysteresis, stick-slip effects, repetitive disturbances, coupling between degrees-of-freedom (DOFs), geometric nonlinearities and quantization errors. The developed approach is applied to three illustrative experimental cases that exhibit the above mentioned PLFs. The cases include a nano-motion stage driven by a walking piezo actuator, a metrological AFM and an encoder system. The contributions of this thesis relate to modeling, actuation driver development, control synthesis and encoder sensor signal processing. In particular, dynamic models are derived of the bimorph piezo legs of the walking piezo actuator and of the nano-motion stage with the walking piezo actuator containing the switching actuation principle, stick-slip effects and contact dynamics. Subsequently, a model-based optimization is performed to obtain optimal drive waveforms for a constant stage velocity. Both the walking piezo actuator and the AFM case exhibit repetitive disturbances with a non-constant period-time, for which dedicated repetitive control methods are developed. Furthermore, control algorithms have been developed to cope with the present coupling between and hysteresis in the different axes of the AFM. Finally, sensor signal processing algorithms have been developed to cope with the quantization effects and encoder imperfections in optical incremental encoders. The application of the performance-driven control approach to the different cases shows that the different identified PLFs can be successfully modeled and compensated for. The experiments show that the performance-driven control approach can largely improve the performance of nano-motion systems with piezo actuators and/or encoder sensors

    Design and implementation of high-bandwidth, high-resolution imaging in atomic force microscopy

    Get PDF
    Video-rate imaging with subnanometer resolution without compromising on the scan range has been a long-awaited goal in Atomic Force Microscopy (AFM). The past decade saw significant advances in hardware used in atomic force microscopes, which further enable the feasibility of high-speed Atomic Force Microscopy. Control design in AFMs plays a vital role in realizing the achievable limits of the device hardware. Almost all AFMs in use today use Proportional-Integral-Derivative(PID) control designs, which can be majorly improved upon for performance and robustness. We address the problem of AFM control design through a systems approach to design model-based control laws that can give major improvements in the performance and robustness of AFM imaging. First, we propose a cascaded control design approach to tapping mode imaging, which is the most common mode of AFM imaging. The proposed approach utilizes the vertical positioning sensor in addition to the cantilever deflection sensor in the feedback loop. The control design problem is broken down into that of an inner control loop and an outer control loop. We show that by appropriate control design, unwanted effects arising out of model uncertainties and nonlinearities of the vertical positioning system are eliminated. Experimental implementation of the proposed control design shows improved imaging quality at up to 30% higher speeds. Secondly, we address a fundamental limitation in tapping mode imaging by proposing a novel transform-based imaging mode to achieve an order of magnitude improvement in AFM imaging bandwidth. We introduce a real-time transform that effects a frequency shift of a given signal. We combine model-based reference generation along with the real-time transform. The proposed method is shown to have linear dynamical characteristics, making it conducive for model-based control designs, thus paving the way for achieving superior performance and robustness in imaging

    Generalizing Negative Imaginary Systems Theory to Include Free Body Dynamics: Control of Highly Resonant Structures with Free Body Motion

    Full text link
    Negative imaginary (NI) systems play an important role in the robust control of highly resonant flexible structures. In this paper, a generalized NI system framework is presented. A new NI system definition is given, which allows for flexible structure systems with colocated force actuators and position sensors, and with free body motion. This definition extends the existing definitions of NI systems. Also, necessary and sufficient conditions are provided for the stability of positive feedback control systems where the plant is NI according to the new definition and the controller is strictly negative imaginary. The stability conditions in this paper are given purely in terms of properties of the plant and controller transfer function matrices, although the proofs rely on state space techniques. Furthermore, the stability conditions given are independent of the plant and controller system order. As an application of these results, a case study involving the control of a flexible robotic arm with a piezo-electric actuator and sensor is presented

    Discrete Modeling and Sliding Mode Control of Piezoelectric Actuators

    Get PDF
    With the ability to generate fine displacements with a resolution down to sub-nanometers, piezoelectric actuators (PEAs) have found wide applications in various nano-positioning systems. However, existence of various effects in PEAs, such as hysteresis and creep, as well as dynamics can seriously degrade the PEA performance or even lead to instability. This raises a great need to model and control PEAs for improved performance, which have drawn remarkable attention in the literature. Sliding mode control (SMC) shows its potential to the control of PEA, by which the hysteresis and other nonlinear effects can be regard as disturbance to the dynamic model and thus rejected or compensated by its switching control. To implement SMC in digital computers, this research is aimed at developing novel discrete models and discrete SMC (DSMC)-based control schemes for PEAs, along with their experimental validation. The first part of this thesis concerns with the modeling and control of one-degree of freedom (DOF) PEA, which can be treated as a single-input-single-output (SISO) system. Specifically, a novel discrete model based on the concept of auto-regressive moving average (ARMA) was developed for the PEA hysteresis; and to compensate for the PEA hysteresis and improve its dynamics, an output tracking integrated discrete proportional-integral-derivative-based SMC (PID-SMC) was developed. On this basis, by making use of the availability of PEA hysteresis models, two control schemes, named “the discrete inversion feedforward based PID-SMC” and “the discrete disturbance observer (DOB)-based PID-SMC”, were further developed. To illustrate the effectiveness of the developed models and control schemes, experiments were designed and conducted on a commercially available one-DOF PEA, as compared with the existing ones. The second part of the thesis presents the extension of the developed modeling and control methods to multi-DOF PEAs. Given the fact that details with regard to the PEA internal configurations is not typically provided by the manufacturer, a state space model based on the black box system identification was developed for the three-DOF PEA. The developed model was then integrated in the output tracking based discrete PID-SMC, with its effectiveness verified through the experiments on a commercially available three-DOF PEA. The superiority of the proposed control method over the conventional PID controller was also experimentally investigated and demonstrated. Finally, by integrating with a DOB in the discrete PID-based SMC, a novel control scheme is resulted to compensate for the nonlinearities of the three-DOF PEA. To verify its effectiveness, the discrete DOB based PID-SMC was applied in the control experiments and compared with the existing SMC. The significance of this research lies in the development of the discrete models and PID-based SMC for PEAs, which is of great help to improve their performance. The successful application of the proposed method in the control of multi-DOF PEA allows the application of SMC to the control of complicated multi-inputs-multi-outputs (MIMO) systems without details regarding the internal configuration. Also, integration of the inversion based feedforward control and the DOB in the SMC design has been proven effective for the tracking control of PEAs

    Topics in Machining with Industrial Robot Manipulators and Optimal Motion Control

    Get PDF
    Two main topics are considered in this thesis: Machining with industrial robot manipulators and optimal motion control of robots and vehicles. The motivation for research on the first subject is the need for flexible and accurate production processes employing industrial robots as their main component. The challenge to overcome here is to achieve high-accuracy machining solutions, in spite of the strong process forces required for the task. Because of the process forces, the nonlinear dynamics of the manipulator, such as the joint compliance and backlash, may significantly degrade the achieved machining accuracy of the manufactured part. In this thesis, a macro/micro-manipulator configuration is considered to the purpose of increasing the milling accuracy. In particular, a model-based control architecture is developed for control of the macro/micro-manipulator setup. The considered approach is validated by experimental results from extensive milling experiments in aluminium and steel. Related to the problem of high-accuracy milling is the topic of robot modeling. To this purpose, two different approaches are considered; modeling of the quasi-static joint dynamics and dynamic compliance modeling. The first problem is approached by an identification method for determining the joint stiffness and backlash. The second problem is approached by using gray-box identification based on subspace-identification methods. Both identification algorithms are evaluated experimentally. Finally, online state estimation is considered as a means to determine the workspace position and orientation of the robot tool. Kalman Filters and Rao-Blackwellized Particle Filters are employed to the purpose of sensor fusion of internal robot measurements and measurements from an inertial measurement unit for estimation of the desired states. The approaches considered are fully implemented and evaluated on experimental data. The second part of the thesis discusses optimal motion control applied to robot manipulators and road vehicles. A control architecture for online control of a robot manipulator in high-performance path tracking is developed, and the architecture is evaluated in extensive simulations. The main characteristic of the control strategy is that it combines coordinated feedback control along both the tangential and transversal directions of the path; this separation is achieved in the framework of natural coordinates. One motivation for research on optimal control of road vehicles in time-critical maneuvers is the desire to develop improved vehicle-safety systems. In this thesis, a method for solving optimal maneuvering problems using nonlinear optimization is discussed. More specifically, vehicle and tire modeling and the optimization formulations required to get useful solutions to these problems are investigated. The considered method is evaluated on different combinations of chassis and tire models, in maneuvers under different road conditions, and for investigation of optimal maneuvers in systems for electronic stability control. The obtained optimization results in simulations are evaluated and compared

    Overactuated systems coordination

    Get PDF
    The economic growth inherent to our nowadays society pushes the industries toward better performances. In the mechatronic context, the increasing competition results in more and more stringent specifications. Thus, the multiple objectives to track become hard to achieve without compromises. A potential interesting solution to this problematic is overactuation, in the sense that, the considered system has more actuated degrees of freedom than the minimal number required to realize a task. Indeed, overactuation enables flexible and efficient responses to a high variety of tasks. Moreover, the coordinated combination of different subsystems enables both to combine their advantages and to cancel their disadvantages. However, the successful coordination of the supplementary degrees of freedom at our disposal, thanks to overactuation, is not trivial. As a matter of fact, the problem of unpredictable response of overactuated systems to a periodic excitation can be particularly critical. Furthermore, the flexibility brought by the overactuation is to be used efficiently in order to justify its corresponding complexity and higher costs. In this sense, the tracking of multiple simultaneous objectives are clearly enabled by the overactuation and thus constitutes a clear motivation for such a solution. As a consequence, the constructive coordination of overactuated systems, which can be very difficult, is very important to achieve stringent objectives. This thesis aims at contributing to the improvement of the coordination of such systems. In this context, three axis of research are considered: differential geometry, potential functions and closed-loop control. Each of these axis is to be taken as a separate insight on the overall coordination of overactuated systems. On the one hand, the formalism of differential geometry enables a solution to the unpredictability problem raised here above. An intelligent parameterization of the solution space to a periodic task enforces the predictability of the subsystem responses. Indeed, the periodicity of the task is transferred to the latter subsystem responses, thanks to an adequate coordination scheme. On the second hand, potential functions enable the coordination of multiple simultaneous objectives to track. A clear hierarchy in the tasks priority is achieved through their successive projections into reduced orthogonal subspaces. Moreover, the previously mentioned predictability problem is also re-examined in this context. Finally, in the frame of an international project in collaboration with the European Southern Observatory (ESO), an opto-mecatronic overactuated system, called Differential Delay Line, enables the consideration of closed-loop coordination. The successful coordination of the subsystems of the Differential Delay Line, combining their intrinsic advantages, is the key control-element ensuring the achievement of the stringent requirements. This thesis demonstrates that a constructive coordination of the supplementary degrees of freedom of overactuated systems enables to achieve, at least partly, the stringent requirements of nowadays mechatronics

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored
    corecore